www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Herleitung lineare Abbildung
Herleitung lineare Abbildung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung lineare Abbildung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 23.01.2012
Autor: TransFourier

Aufgabe
Ein Tisch (Gewicht [mm] $G_T$, [/mm] Abmaße $a = [mm] 1{,}2\,\mathrm [/mm] m, b = [mm] 0{,}8\,\mathrm [/mm] m$) wird durch eine Kugel (Gewicht [mm] $G_1$) [/mm] an unbekannter Stelle auf dem Tisch belastet. Dabei werden in den Tischbeinen die Stützkräfte [mm] $F_1 [/mm] = [mm] 40\,\mathrm [/mm] N, [mm] F_2 [/mm] = [mm] 80\,\mathrm [/mm] N, [mm] F_3 [/mm] = [mm] 110\,\mathrm [/mm] N, [mm] F_4 [/mm] = [mm] 70\,\mathrm [/mm] N$ gemessen. Durch Auflegen einer zweiten Kugel mit halbem Gewicht erhöhen sich die Tischbeinkräfte auf [mm] $\overline F_1 [/mm] = [mm] 60\,\mathrm [/mm] N, [mm] \overline F_2 [/mm] = [mm] 90\,\mathrm [/mm] N, [mm] \overline F_3 [/mm] = [mm] 120\,\mathrm [/mm] N, [mm] \overline F_4 [/mm] = [mm] 90\,\mathrm N$.\\ [/mm]
Bestimmen Sie das Gewicht des Tisches und der Kugeln. An welchen Stellen liegen die beiden Kugeln auf? Warum kann die Problemstellung nicht umgekehrt werden, d.h. die Tischbeinkräfte aus den Gewichtskräften berechnet werden?
Skizze: Länge $a$ läuft entlang der $x$-Achse, Breite $b$ entlang der $y$-Achse. Die Tischbeine sind gegen den Uhrzeigersinn durchnummeriert. Der Ursprung liegt bei [mm] $(^a/_2|^b/_2)$ [/mm] auf der Tischoberfläche, sodass die Koordinaten die Abweichung von der Tischmitte angeben. Das erste Tischbein liegt im dritten Quadranten.
[Dateianhang nicht öffentlich]


Die Gewichtskräfte der Kugeln habe ich bereits mittels Gleichungssystem bestimmt: [mm] $G_T [/mm] = [mm] 180\,\mathrm [/mm] N, [mm] G_1 [/mm] = [mm] 120\,\mathrm [/mm] N$. Um die zweite Frage zu beantworten, stelle ich für jede Dimension nun eine lineare Funktion auf, die dann auf ein $x [mm] \le [/mm] |0{,}6|$ beziehungsweise $y [mm] \le [/mm] |0{,}4|$ abbilden. Beide verlaufen durch den Ursprung $O$. Wie komme ich nun auf den jeweils zweiten Punkt? Welche Argumente sollte die Abbildung bekommen?

Kleingedrucktes:
- Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
- Mit Suchmaschine/Forensuche war ich soweit erfolglos.


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Herleitung lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 23.01.2012
Autor: Event_Horizon

Hallo!

irgendwie ist es sehr schwer, dir zu folgen. Kannst du mal etwas näher darauf eingehen, was du gemacht hast, und evtl mal deine Gleichungen zeigen?

Im Prinzip kannst du eine lin. Gleichung angeben, die dir abhängig von der x-Position der Kugel die Kraft auf die Beine 1&3 liefert. Auf die Beine 2&4 wirkt dementsprechend die Differenz zur Gesamtgewichtskraft. Aber da du die Kraft auf 2&4 kennst, kannst du x berechnen. Gleiches gilt dann auch in y-Richtung.

Von der zweiten Kugel weißt du ja auch, welche Kraft sie auf welches Bein ausübt, daher kannst du auch ihre Position berechnen.


Allerdings ist mir nicht klar, was mit der Frage gemeint ist, daß die Problemstellung nicht umgekehrt werden könne.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de