www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte mit/ohne L´Hospital
Grenzwerte mit/ohne L´Hospital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte mit/ohne L´Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Do 03.05.2018
Autor: Tobikall

Aufgabe
[mm] \limes_{x\rightarrow\circ} \bruch{1-(x^x)}{x^p} [/mm] für p > 0

[mm] \limes_{x\rightarrow\infty} \bruch{(1+1/x)^x-e}{1/x} [/mm]

[mm] \limes_{x\rightarrow\circ} \bruch{log(1+x)-x+(x^2)/2}{x^3} [/mm]

[mm] \limes_{x\rightarrow\circ} \bruch{x}{x^2e^{ix^{-2}}} [/mm]

Bei den Grenzwerten komme ich mit l´Hospital nicht richtig weiter, da beim Anwenden wieder Grenzwerte mit der Form 0/0 auftreten.

Wie kann ich hier vorgehen?
Bei der ersten kann man vielleicht mit Potenzreichen argumentieren, aber da kommt bei mir auch noch nichts logisches raus?

        
Bezug
Grenzwerte mit/ohne L´Hospital: Zu Nr. 3
Status: (Antwort) fertig Status 
Datum: 09:20 Do 03.05.2018
Autor: Diophant

Hallo,

ad hoc hätte ich eine Antwort für die Nr. 3 anzubieten. Zunächst hätte ich jedoch zur Nr. 1 eine Rückfrage:

> [mm]\limes_{x\rightarrow\circ} \bruch{1-(x^x)}{x^p}[/mm] für p > 0

Ist hier p eine natürliche Zahl oder rational bzw. reell (vermutlich letzteres)?

>

> [mm]\limes_{x\rightarrow\infty} \bruch{(1+1/x)^x-e}{1/x}[/mm]

>

> [mm]\limes_{x\rightarrow\circ} \bruch{log(1+x)-x+(x^2)/2}{x^3}[/mm]

>

> [mm]\limes_{x\rightarrow\circ} \bruch{x}{x^2e^{ix^{-2}}}[/mm]
> Bei
> den Grenzwerten komme ich mit l´Hospital nicht richtig
> weiter, da beim Anwenden wieder Grenzwerte mit der Form 0/0
> auftreten.

>

Die Nr. 3 klappt gut mit de l'Hospital. Hier ist

[mm]\begin{aligned} \frac{f'(x)}{g'(x)}&= \frac{ \frac{1}{1+x}-1+x}{3x^2}\\ \\ &=\frac{\frac{1-(1+x)+(x+x^2)}{1+x}}{3x^2}\\ \\ &= \frac{ \frac{x^2}{1+x}}{3x^2}\\ \\ &= \frac{1}{3*(1+x)}\\ \end{aligned}[/mm]


Gruß, Diophant

Bezug
                
Bezug
Grenzwerte mit/ohne L´Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:38 Do 03.05.2018
Autor: Tobikall

Vielen dank schonmal für deine schnelle Antwort Diophant :)
p wird wahrscheinlich reell sein, steht aber sonst nichts dabei :/

Bezug
        
Bezug
Grenzwerte mit/ohne L´Hospital: Ohne L'Hospital
Status: (Antwort) fertig Status 
Datum: 11:05 Do 03.05.2018
Autor: Gonozal_IX

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hiho,

a)
$\bruch{1-(x^x)}{x^p} = \frac{\bruch{1-x^x}{x^{p-1}}}{x - 0}$
Wende nun den Mittelwertsatz der Differenzialrechnung für $f(x) = \bruch{1-(x^x)}{x^{p-1}$  an.

Du erhälst nach Vereinfachung einen Grenzwert der Form:
$\lim_{x\to 0} x^{1-p}(\log(x) + 1)$, den du kennen solltest in Abhängigkeit von $p$

b) Wir substituieren $n = \frac{1}{x}$ und erhalten:
$\frac{(1+n)^\frac{1}{n} - e}{n - 0}$, nun wieder MWS

c) Nutze die Reihenentwicklung von $\log(1+x)$

d) muss ich noch überlegen…

Gruß,
Gono




Bezug
        
Bezug
Grenzwerte mit/ohne L´Hospital: Mit L'Hospital
Status: (Antwort) fertig Status 
Datum: 21:45 Do 03.05.2018
Autor: Gonozal_IX

Hiho,

a)
Erst mal halten wir fest, dass es eigentlich: [mm] $\lim_{x \searrow 0}$ [/mm] heißen muss, ansonsten ist der Ausdruck [mm] $x^x$ [/mm] nicht definiert. Und wieso in Herrgotts Namen schreibst du nicht einfach 0 für Null?
Einmal L'Hospital anwenden liefert:

[mm] $\lim_{x \searrow 0} \bruch{1-x^x}{x^p} [/mm] = [mm] \lim_{x \searrow 0} \bruch{-x^x(\ln(x) + 1)}{px^{p-1}}$ [/mm]

Für $p [mm] \ge [/mm] 1$ sind wir fertig (wieso?) für $0 < p < 1$ wenden wir nochmal L'Hospital an und sind dann fertig.

b)
Einmal L'Hospital anwenden liefert:

$ [mm] \limes_{x\rightarrow\infty} \bruch{(1+1/x)^x-e}{1/x} [/mm] = $ [mm] \limes_{x\rightarrow\infty} -\bruch{(1+1/x)^x\left(\ln\left(1+1/x\right) + \frac{x^2}{x+1}\right)}{1/x^2} [/mm] $$ und wir sind fertig.

c) bereits erledigt

d) Einmal L'Hospital anwenden liefert:

$ [mm] \limes_{x\rightarrow 0} \bruch{x}{x^2e^{ix^{-2}}} =\limes_{x\rightarrow 0}\bruch{1}{2xe^{ix^{-2}} + \frac{-2i}{x}e^{ix^{-2}}} [/mm] = [mm] \frac{1}{2}\limes_{x\rightarrow 0}\bruch{x}{x^2e^{ix^{-2}} - ie^{ix^{-2}}} [/mm] $

Und wir sind fertig.

War das nun so schwer immer einmal L'Hospital anzuwenden?

Gruß,
Gono

Bezug
                
Bezug
Grenzwerte mit/ohne L´Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Do 03.05.2018
Autor: Tobikall

Danke an dich Gonozal!

Nein, so schwer war es nicht, es ist mir jetzt echt klar geworden wie es funkioniert, aber zumindest ein Teil der Aufgaben funktioniert ja auch doch ohne l`Hospital mit dem Differenzenquotienten und logischem Denken :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de