www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 So 25.01.2009
Autor: Debby

Aufgabe
Berechne, soweit existent, den folgenden Grenzwert:
lim (x [mm] \to [/mm] 1) [mm] x^\bruch{1}{x-1} [/mm]

Hallo!

irgendwie komme ich bei dieser Aufgabe nicht weiter.
Ich habe versucht den Term umzuschreiben, sodass ich L'Hospital anwenden kann, aber das hat auch nicht funktioniert:

lim (x [mm] \to [/mm] 1) [mm] x^{\bruch{1}{x-1}} [/mm] = lim (x [mm] \to [/mm] 1) [mm] e^{\bruch{1}{x-1}*ln x} [/mm]
=lim (x [mm] \to [/mm] 1) [mm] \bruch{ln x}{e^{x-1}} [/mm]

Im Nenner kommt 1 heraus wenn ich nur den Nenner gegen 1 gehen lasse und dann kann man L'Hospital ja nicht anwenden.

Hat da jemand eine Idee??

lg
Debby

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 So 25.01.2009
Autor: schachuzipus

Hallo Debby,

> Berechne, soweit existent, den folgenden Grenzwert:
>   lim (x [mm]\to[/mm] 1) [mm]x^\bruch{1}{x-1}[/mm]
>  Hallo!
>  
> irgendwie komme ich bei dieser Aufgabe nicht weiter.
> Ich habe versucht den Term umzuschreiben, sodass ich
> L'Hospital anwenden kann [ok]

gute Idee!

> , aber das hat auch nicht funktioniert:
>  
> lim (x [mm]\to[/mm] 1) [mm]x^{\bruch{1}{x-1}}[/mm] = lim (x [mm]\to[/mm] 1)
> [mm]e^{\bruch{1}{x-1}*ln x}[/mm] [ok]
>  =lim (x [mm]\to[/mm] 1) [mm]\bruch{ln x}{e^{x-1}}[/mm]
>  
> Im Nenner kommt 1 heraus wenn ich nur den Nenner gegen 1
> gehen lasse und dann kann man L'Hospital ja nicht anwenden.
>
> Hat da jemand eine Idee??

Ja!

Da die e-Funktion stetig ist, gilt [mm] $\lim\limits_{x\to x_0}e^{f(x)}=e^{\lim\limits_{x\to x_0}f(x)}$ [/mm]

Du hast die richtige Darstellung [mm] $x^{\frac{1}{x-1}}=e^{\frac{1}{x-1}\cdot{}\ln(x)}$ [/mm] herausgefunden, damit kann man arbeiten ;-)

Greife dir nun den Exponenten heraus:

[mm] $\frac{1}{x-1}\cdot{}\ln(x)=\frac{ln(x)}{x-1}$ [/mm]

Untersuche nun hiervon den [mm] $\lim\limits_{x\to 1}$ [/mm]

Aber nicht vergessen, diesen GW nachher noch [mm] $e^{GW}$ [/mm] zu nehmen ... (siehe den Kommentar oben zur Stetigkeit der e-Funktion)


>  
> lg
>  Debby


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de