www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Grenzwert einer Folge
Grenzwert einer Folge < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Sa 07.03.2020
Autor: sancho1980

Hallo!
Habe eine kurze Frage ohne Kontext. Anscheinend gilt

[mm] \summe_{i=0}^{\infty} \bruch{\lambda^i}{i!} [/mm] = [mm] e^{\lambda} [/mm]

Habe versucht, das hier nach x (= [mm] \lambda) [/mm] aufzulösen, leider erfolglos:

[mm] \limes_{n\rightarrow\infty} \summe_{i=0}^{n} \bruch{\lambda^i}{i!} [/mm] = [mm] \bruch{\lambda^0}{0!} [/mm] + ... + [mm] \bruch{\lambda^n}{n!} [/mm] = [mm] e^x [/mm] = [mm] \limes_{n\rightarrow\infty} \summe_{i=0}^{n} \bruch{1}{i!} [/mm] = [mm] (\bruch{1}{0!} [/mm] + ... + [mm] \bruch{1}{n!})^x [/mm]

x = [mm] \limes_{n\rightarrow\infty} ln(\summe_{i=0}^{n} \bruch{\lambda^i}{i!}) [/mm]

Und nun? Komme ich hiermit überhaupt weiter?

Danke und Gruß,

Martin

        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Sa 07.03.2020
Autor: leduart

Hallo
das ist einfach die Taylorreihe mit der [mm] e^x [/mm] definiert werden kann , wenn man irgendeine Def, von [mm] e^x [/mm] hat. Ich denke nicht dass du da was beweisen musst, oder wie ist denn für dich [mm] e^x [/mm] definiert?
Gruß ledum

Bezug
                
Bezug
Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Sa 07.03.2020
Autor: sancho1980

Hallo,

ach Taylor-Reihe. Was einem nicht alles einfallen muss!
Ok, jetzt kann ich die Herleitung des Erwartungswertes der Poisson-Verteilung nachvollziehen:

E(X) = [mm] \summe_{i=0}^{\infty} [/mm] i [mm] \bruch{\lambda^i}{i!} e^{-\lambda} [/mm] = [mm] \lambda e^{-\lambda}\summe_{i=1}^{\infty}\bruch{\lambda^{i - 1}}{(i - 1)!} [/mm] = [mm] \lambda e^{-\lambda}\summe_{i=0}^{\infty}\bruch{\lambda^i}{i!} [/mm] = [mm] \lambda e^{-\lambda} e^{\lambda} [/mm] = [mm] \lambda [/mm]

Jetzt steht hier, die Rechnung für die Varianz [mm] (\sigma^2 [/mm] = [mm] \lambda) [/mm] sieht analog aus.

Versuche mich daran, leider bislang vergeblich:

[mm] \sigma^2 [/mm] = [mm] \summe_{i=0}^{\infty} i^2 \bruch{\lambda^i}{i!}e^{-\lambda} [/mm] - [mm] \lambda^2 [/mm] = [mm] \summe_{i=1}^{\infty} i^2 \bruch{\lambda^i}{i!} e^{-\lambda} [/mm] - [mm] \lambda^2 [/mm] = [mm] \bruch{\lambda}{e^{\lambda}} \summe_{i=1}^{\infty} [/mm] i [mm] \bruch{\lambda^{i - 1}}{(i - 1)!} [/mm] - [mm] \lambda^2 [/mm]

Wie geht es jetzt weiter? Kann mir einer helfen?

Danke und Gruß,

Martin

Bezug
                        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 So 08.03.2020
Autor: Gonozal_IX

Hiho,

> Wie geht es jetzt weiter? Kann mir einer helfen?

Es ist $i = (i-1) + 1$

Gruß,
Gono

Bezug
        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Sa 07.03.2020
Autor: fred97


> Hallo!
>  Habe eine kurze Frage ohne Kontext. Anscheinend gilt
>  
> [mm]\summe_{i=0}^{\infty} \bruch{\lambda^i}{i!}[/mm] = [mm]e^{\lambda}[/mm]
>  
> Habe versucht, das hier nach x (= [mm]\lambda)[/mm] aufzulösen,
> leider erfolglos:
>  
> [mm]\limes_{n\rightarrow\infty} \summe_{i=0}^{n} \bruch{\lambda^i}{i!}[/mm]
> = [mm]\bruch{\lambda^0}{0!}[/mm] + ... + [mm]\bruch{\lambda^n}{n!}[/mm] = [mm]e^x[/mm]
> = [mm]\limes_{n\rightarrow\infty} \summe_{i=0}^{n} \bruch{1}{i!}[/mm]
> = [mm](\bruch{1}{0!}[/mm] + ... + [mm]\bruch{1}{n!})^x[/mm]


Nach dem  dritten =  fehlt ein x, nach dem vierten  = fehlt  lim.

>  
> x = [mm]\limes_{n\rightarrow\infty} ln(\summe_{i=0}^{n} \bruch{\lambda^i}{i!})[/mm]
>  
> Und nun?

Diese letzte Gleichung ist  gerade

   $ [mm] x=\ln (e^{\lambda })=\lambda [/mm] =x$,

Nach dem  Motto : verwurschtle ich eine Funktion mit ihrer Umkehrfunktion,  so kommt die Identität heraus.



> Komme ich hiermit überhaupt weiter?
>  
> Danke und Gruß,
>  
> Martin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de