www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Grassmann - Identität
Grassmann - Identität < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grassmann - Identität: Verifizieren
Status: (Frage) beantwortet Status 
Datum: 20:41 Fr 19.06.2015
Autor: Jura86

Aufgabe
Verifizieren Sie die Grassmann-Identität
u × (v × w ) = ( u · w ) v − ( u · v ) w
für
u = (2,−2,1,)   v = ( 2,5,14 )  w = (4,4,−2)

Wie kann man diese Aussage interpretieren (wie liegt u × (v × w) in Bezug auf v,w)?

Was versteht man unter Grassman - Identität ?
Und was heißt Verifizieren ?

Ich habe meiner Idee nach für u, v und w die Vektoren eingesetzt und gerechnet.
Ist das, das Verifizieren ?

u = (2,−2,1,)   v = ( 2,5,14 )  w = (4,4,−2)

u × (v × w ) = ( u · w ) v − ( u · v ) w


[mm] \vektor{2 \\ -2 \\ 1} \times [/mm]  (  [mm] \vektor{2 \\ 5 \\ 14} \times \vektor{4 \\ 4 \\ -2} [/mm] ) =(  [mm] \vektor{2 \\ -2 \\ 1} [/mm] * [mm] \vektor{2 \\ -2 \\ 1} [/mm] ) [mm] *\vektor{2 \\ -2 \\ 1} [/mm] -  ( [mm] \vektor{2 \\ -2 \\ 1} [/mm] * [mm] \vektor{2 \\ -2 \\ 1} [/mm] ) * [mm] \vektor{2 \\ -2 \\ 1} [/mm]

= u [mm] \times [/mm] 0 = (v*w)*v - (u*v)*w

[mm] =\vektor{2 \\ -2 \\ 1} \times \vektor{0\\ 0 \\ 0} [/mm] = [mm] \vektor{16 \\ -40 \\-28}- \vektor{16 \\ -40\\ -28} [/mm]

= 0=0

Ist das richtig so ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Grassmann - Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Fr 19.06.2015
Autor: chrisno


> Verifizieren Sie die Grassmann-Identität
>  u × (v × w ) = ( u · w ) v − ( u · v ) w für
>  u = (2,−2,1)   v = ( 2,5,14 )  w = (4,4,−2)
>  
> Wie kann man diese Aussage interpretieren (wie liegt u × (v × w) in Bezug auf v,w)?

Schau auf die rechte Seite. Da steht eine Linearkombination von v und w. Welches geometrisches Gebilde wird durch alle möglichen dieser Linarkombinationen von v und w beschrieben?

Zum Vergleich kannst Du es auch "zu Fuß" machen: v x w steht senkrecht auf v und auf w. das Ergebnis von u × (v × w ) steht wiederum senkrecht auf diesem.

>  Was versteht man unter Grassman - Identität ?

Die Gleichung u × (v × w ) = ( u · w ) v − ( u · v ) w heißt Grassmann - Identität.

>  Und was heißt Verifizieren ?

Zeigen dass es stimmt.

>  
> Ich habe meiner Idee nach für u, v und w die Vektoren  eingesetzt und gerechnet.
>  Ist das, das Verifizieren ?

Wenn am Ende der Rechnung herauskommt, dass es stimmt, ja.

>  
> u = (2,−2,1)   v = ( 2,5,14 )  w = (4,4,−2)
>  
> u × (v × w ) = ( u · w ) v − ( u · v ) w

Die Gleichheit sollst Du zeigen. Dafür rechnest Du beide Seiten getrennt aus.

>  
>

Für die linke Seite:
[mm]\vektor{2 \\ -2 \\ 1} \times \left( \vektor{2 \\ 5 \\ 14} \times \vektor{4 \\ 4 \\ -2} \right) =\vektor{2 \\ -2 \\ 1} \times \vektor{0\\ 0 \\ 0}[/mm]
Das ist aber falsch gerechnet. Ich befürchte, dass Du das Vektorprodukt auch Kreuzprodukt genannt, nicht kennst. Du musst also erst die Bedeutung des Rechenzeichens x klären und üben, bevor Du an dieser Aufgabe weiter arbeiten kannst.

Für die rechte Seite

(  [mm]\vektor{2 \\ -2 \\ 1}[/mm] * [mm]\vektor{2 \\ -2 \\ 1}[/mm] ) [mm]*\vektor{2 \\ -2 \\ 1}[/mm] -  ( [mm]\vektor{2 \\ -2 \\ 1}[/mm] * [mm]\vektor{2 \\ -2 \\ 1}[/mm] ) * [mm]\vektor{2 \\ -2 \\ 1}[/mm]
Du setzt immer nur u ein, obwohl da auch w und v stehen müssen. Das musst Du vor einer Rechnung erst einmal richtig hinschreiben.

Bezug
                
Bezug
Grassmann - Identität: Rechenweg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Sa 20.06.2015
Autor: Jura86

Gut ich werde dann mal besser erst andere Aufgabe lösen dann komme ich zu dieser zurück.

Bis bald.!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de