www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Geburtstage von zwei Personen
Geburtstage von zwei Personen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstage von zwei Personen: Richtige Anzahl der Möglichkei
Status: (Frage) beantwortet Status 
Datum: 12:23 Mi 03.02.2021
Autor: Riesenradfahrrad

Hallo!

ich habe folgendes Problem:
1. Es sollen zunächst alle Möglichkeiten gezählt werden, dass zwei zufällig ausgewählte Menschen nicht am gleichen Tag Geburtstag haben.

Hier gibt es meiner Ansicht nach zwei Möglichkeiten zu zählen.
a) Ich unterscheide die beiden Personen, nenne sie A und B und unterscheide zB die Fälle (Geburstag von A ist am dritten Januar, Geburstag von B ist am 17. März) [mm] $\neq$ [/mm] (Geburstag von B ist am dritten Januar, Geburstag von A ist am 17. März) und komme auf
[mm] $$\begin{pmatrix} 365\\2\end{pmatrix}\cdot2!=132860$$ [/mm]
b) Ich unterscheide obiges Tupel nicht, betrachte also Mengen nicht Tupel, und erhalte halb so viele Möglichkeiten
[mm] $$\begin{pmatrix} 365\\2\end{pmatrix}=66430$$ [/mm]

Dass man auf zwei verschiedene Arten zählen kann, finde ich eigentlich schon unmathematisch genug.
Aber noch skurriler finde ich, dass ich zwei verschiedene Wahrscheinlichkeiten herausbekomme

[mm] $$P(\text{A und B nicht am gleichen Tag Geburtstag nach a)})=\tfrac{\begin{pmatrix} 365\\2\end{pmatrix}\cdot2!}{365^2}=\tfrac{364}{365}$$ [/mm]

[mm] $$P(\text{A und B nicht am gleichen Tag Geburtstag nach b)})=\tfrac{\begin{pmatrix} 365\\2\end{pmatrix}}{365^2-\begin{pmatrix} 365\\2\end{pmatrix}}=\tfrac{364}{366}$$ [/mm]

Aber eventuell habe ich mich verrechnet... Kann jemand da Klarheit hineinbringen?


        
Bezug
Geburtstage von zwei Personen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Mi 03.02.2021
Autor: statler

Auch hallo!
>  
> ich habe folgendes Problem:
>  1. Es sollen zunächst alle Möglichkeiten gezählt
> werden, dass zwei zufällig ausgewählte Menschen nicht am
> gleichen Tag Geburtstag haben.
>  
> Hier gibt es meiner Ansicht nach zwei Möglichkeiten zu
> zählen.

Scheitert die richtige Lösung vielleicht einfach daran, daß das Problem noch nicht hinreichend genau beschrieben ist?
Man könnte auch antworten: Es gibt 2 Möglichkeiten, nämlich daß sie am gleichen Tag Geburtstag haben oder eben nicht. Das ist aber ziemlich sicher nicht gemeint.
Du deutest ja an, daß du mit Hilfe der Möglichkeiten eine Wahrscheinlichkeit ausrechnen willst oder sollst. Und die ist nicht 1/2, weil mein Vorschlag keine Laplace-Verteilung liefert.

Welche  tools sind dir denn geläufig? Urnenmodelle, Wahrscheinlichkeitsbäume, Wahrscheinlichkeitsräume?

Gruß Dieter

Bezug
        
Bezug
Geburtstage von zwei Personen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 03.02.2021
Autor: HJKweseleit

Bei a) zählst du doch einfach die verschiedenen Möglichkeiten für beliebige 2 verschiedene Tage und verdoppelst, weil ja getauscht werden kann. Das setzt du ins Verhältnis zu allen Möglichkeiten, wobei du auch hier Tausche doppelt zählst (daher [mm] 365^2). [/mm]

Bei b) zählst du nur die verschiedenen Möglichkeiten für 2 verschiedene Tage. Die musst du jetzt ins Verhältnis zu allen möglichen Tagen setzen, wobei Vertauschungen aber nur einmal gezählt werden sollen. Du nimmst also alle möglichen Paare und willst dann die [mm] \vektor{365 \\ 2} [/mm] abziehen, weil sie ja doppelt vorkommen und nur einmal gezählt werden sollen. Das ist sehr schlau, aber du hast etwas dabei vergessen: Die Rechnung (Anzahl aller günstigen mögl.)/(Anzahl aller Mögl.) gibt nur dann die Wahrsch. wieder, wenn alle Mgl. gleichwahrscheinlich sind. Wenn du dir bei [mm] 365^2 [/mm] vorstellst, dass du zuerst das Datum für A und dann das für B würfelst und als Paar aufschreibst, dann ist z.B. (2.2.|2.2.) genau so wahrscheinlich wie (3.4.|5.6.). Weil aber auch noch (5.6.|3.4.) vorkommt und du diese beiden letztgenannten Daten bei den günstigen Ereignissen nur einmal gezählt hast, teilst du nun durch 2, indem du diese Mgl. einmal wieder subtrahierst. Da du das aber mit den Doppeltagen wie (2.2.|2.2.) nicht machst, wirkt deren Anzahl nun, als hätten sie die doppelte Wahrscheinlichkeit gegenüber (3.4.|5.6.) bzw. die selbe Wahrscheinlichkeit wie das Paar (3.4.|5.6.) und (5.6.|3.4.) zusammen. Deshalb musst du auch die Doppeltermine nochmal halb abziehen:

[mm] \bruch{\vektor{365 \\ 2}}{365^2-\vektor{365 \\ 2}-365/2}=\bruch{364}{365} [/mm]


Dritter Weg - wohl der einfachste: A hat sonstwann Geburtstag. Wie groß ist nun die W., dass B an einem anderen Tag Geburtstag hat? [mm] \bruch{364}{365} [/mm] und fertig.


Wie groß ist die W., dass 5 Personen an verschiedenen Tagen Geb.Tag haben?

1. Kandidat: egal, p=1
Dazu kommt 2. Kandidat: an einem anderen Tag: [mm] p=1*\bruch{364}{365} [/mm]

Dazu kommt 3. Kandidat: an keinem der bisherigen Tage: [mm] p=1*\bruch{364}{365}*\bruch{363}{365} [/mm]

Dazu kommt 4. Kandidat: an keinem der bisherigen Tage: [mm] p=1*\bruch{364}{365}*\bruch{363}{365}*\bruch{362}{365} [/mm]

Dazu kommt 5. Kandidat: an keinem der bisherigen Tage: [mm] p=1*\bruch{364}{365}*\bruch{363}{365}*\bruch{362}{365}*\bruch{361}{365} [/mm]
usw.

Bezug
                
Bezug
Geburtstage von zwei Personen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:07 Di 16.02.2021
Autor: Riesenradfahrrad

Vieler Dank an statler für den gewitzten Hinweis mit P=1/2 und sehr großen Dank HJKweseleit. Den letzten Teil finde ich sehr clever und Schülerfreundlich (Baumdiagramm veranschaulichbar). Den mittleren Teil muss ich mir noch mal mit mehr Ruhe anschauen und kann dann erst rückmelden, ob ich ihn nachvollziehen kann - aber schon mal dafür besten Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de