www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fouriertrafo + reguläre Matrix
Fouriertrafo + reguläre Matrix < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertrafo + reguläre Matrix: Rückfragen zu Beweis
Status: (Frage) beantwortet Status 
Datum: 16:04 So 29.12.2013
Autor: catastropeia

Aufgabe
Zeigen Sie, dass für jede invertierbare, reelle $ n [mm] \times [/mm] n $ Matrix $ A $ gilt:

$ FT(f) [mm] \circ A^t [/mm] = [mm] \bruch{1}{|det A|} [/mm] FT(f [mm] \circ A^{-1}) [/mm] $


Mein Ansatz (achja, die einsdurchzweipihochnochwas schenk ich mir, für hier):


$ FT(f) [mm] \circ A^t [/mm] = [mm] \integral{f(x)*e^{-i} dx} [/mm] = [mm] \integral{f(x)*e^{-i}dx} [/mm] $


Jetzt Anwendung des Transformationssatzes $ [mm] \integral_{U}{g(T(x))*|det dT(x)|dx} [/mm] = [mm] \integral_{V}{f(x)dx} [/mm] $ für $ T:U->V $:
mit $ [mm] T:\IR^n->\IR^n, [/mm] T(x):= [mm] A^{-1}x [/mm] $ => $ det dT(x) = det [mm] A^{-1} [/mm] $, $ [mm] g(x):=f(x)e^{-i} [/mm] $ ist

[mm] \integral{f(x)*e^{-i}dx} [/mm] = [mm] \integral{f(A^{-1}x)*e^{-i}*|det A^{-1}|dx} [/mm] = [mm] \bruch{1}{|det A|} \integral{f(A^{-1}x)*e^{-i}}dx [/mm] = [mm] \bruch{1}{|det A|} [/mm] $FT(f [mm] \circ A^{-1})$ \Box [/mm]



Jetzt zu den Fragen:
1. Stimmt das so?
2. Eigentlich hätte ich gedacht, dass $ FT(f [mm] \circ A^{-1}) [/mm] $ = [mm] \integral{f(A^{-1}x)*e^{-i}}d(A^{-1}x) [/mm] sein müsste - halt nach der Regel $ FT(f(x)) $ := [mm] \integral{f(x)*e^{-i}}dx. [/mm] Aber dann funktioniert der Beweis ja nicht, wie ich ihn gemacht habe (oder doch irgendwie?).

Schonmal Danke für Antworten...

        
Bezug
Fouriertrafo + reguläre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 30.12.2013
Autor: hippias


> Zeigen Sie, dass für jede invertierbare, reelle [mm]n \times n[/mm]
> Matrix [mm]A[/mm] gilt:
>  
> [mm]FT(f) \circ A^t = \bruch{1}{|det A|} FT(f \circ A^{-1})[/mm]
>  
> Mein Ansatz (achja, die einsdurchzweipihochnochwas schenk
> ich mir, für hier):
>  
>
> [mm]FT(f) \circ A^t = \integral{f(x)*e^{-i} dx} = \integral{f(x)*e^{-i}dx}[/mm]
>  
>
> Jetzt Anwendung des Transformationssatzes
> [mm]\integral_{U}{g(T(x))*|det dT(x)|dx} = \integral_{V}{f(x)dx}[/mm]
> für [mm]T:U->V [/mm]:
>  mit [mm]T:\IR^n->\IR^n, T(x):= A^{-1}x[/mm] => [mm]det dT(x) = det A^{-1} [/mm],

> [mm]g(x):=f(x)e^{-i}[/mm] ist
>
> [mm]\integral{f(x)*e^{-i}dx}[/mm] =
> [mm]\integral{f(A^{-1}x)*e^{-i}*|det A^{-1}|dx}[/mm] =
> [mm]\bruch{1}{|det A|} \integral{f(A^{-1}x)*e^{-i}}dx[/mm] =
> [mm]\bruch{1}{|det A|}[/mm]  [mm]FT(f \circ A^{-1})[/mm] [mm]\Box[/mm]
>  
>
>
> Jetzt zu den Fragen:
>  1. Stimmt das so?

Ja.

>  2. Eigentlich hätte ich gedacht, dass [mm]FT(f \circ A^{-1})[/mm]
> = [mm]\integral{f(A^{-1}x)*e^{-i}}d(A^{-1}x)[/mm] sein
> müsste - halt nach der Regel [mm]FT(f(x))[/mm] :=
> [mm]\integral{f(x)*e^{-i}}dx.[/mm]

Die zu fouriertransformierende Funktion taucht weder im Exponenten der Exponentialfunktion auf, oder Teile von ihr, noch beim $dx$. Es ist somit nach Definition $FT(f [mm] \circ A^{-1}) [/mm] = [mm] \integral{f(A^{-1}x)*e^{-i}}dx$. [/mm]

> Aber dann funktioniert der
> Beweis ja nicht, wie ich ihn gemacht habe (oder doch
> irgendwie?).
>  
> Schonmal Danke für Antworten...


Bezug
                
Bezug
Fouriertrafo + reguläre Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Mi 01.01.2014
Autor: catastropeia

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ah, ja das macht Sinn. Also in meinen Worten nochmal, wenn man eine Verkettung von Funktionen $ f \circ g (x) $ fouriertransformieren möchte, kann man die definieren als $ f \circ g (x) := h(x) $ und dann ist die Fouriertransformierte $ FT(f \circ g (x))(y) = FT(h(x))(y) = \integral{h(x)e^{-i<x,y>}dx = \integral{f(g(x))e^{-i<x,y>}dx} $

=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de