www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fouriertr. von f(t) mit f->inf
Fouriertr. von f(t) mit f->inf < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertr. von f(t) mit f->inf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 04.05.2009
Autor: Musi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Problem 1:
Gegeben sei die Fouriertransformierte F(p) der Funktion f(t). Gesucht ist eine Vereinfachung von f(t) für große t, [mm] \limes_{t\rightarrow\infty} [/mm] f(t):

f(t) = [mm] \integral_{-\infty}^{\infty}{F(p) e^{ipt} dp} [/mm]

Für große t oszilliert die e-Funktion stark. Darum dachte ich, dass nur die Grundmode p=0 beiträgt. Also so etwas wie

[mm] \limes_{t\rightarrow\infty} [/mm] f(t) [mm] \sim [/mm] F(p=0)


Problem 2:
Das ist das eigentliche Problem, bei dem es um mehrdimensionale FT geht.

f(t, [mm] \vec{x}) [/mm] = [mm] \integral{F(p) e^{ipx} d^4p} [/mm]

Wobei x = {t,  [mm] \vec{x} [/mm] } und p = { [mm] k_0, \vec{k} [/mm] } euklidische Vierervektoren aus Zeit- und dreidimensionaler Raumkomponente sind, mit

xp = t [mm] p_o [/mm] + [mm] \vec{x} \vec{p} [/mm] .

Wenn man hier den [mm] \limes_{t\rightarrow\infty} [/mm] f(t, [mm] \vec{x}) [/mm] bildet, gibt es dann eine ähnliche Vereinfachung, wie ich mir das oben gedacht habe? Fällt fann die [mm] \vec{x} [/mm] -Abhängigkeit von f weg?

Ein Beispiel wäre die Funktion F(p) = [mm] \frac{1}{p^2 + \chi}. [/mm] Also

f (t,  [mm] \vec{x}) [/mm] = [mm] \limes_{t\rightarrow\infty} \integral{\frac{1}{p^2 + \chi}e^{ipx} d^4p} [/mm]


Wie müsste man da vorgehen?

Vielen Dank im Voraus für Eure Antworten,
Musi.

        
Bezug
Fouriertr. von f(t) mit f->inf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mi 06.05.2009
Autor: rainerS

Hallo Musi!

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Problem 1:
>  Gegeben sei die Fouriertransformierte F(p) der Funktion
> f(t). Gesucht ist eine Vereinfachung von f(t) für große t,
> [mm]\limes_{t\rightarrow\infty}[/mm] f(t):
>  
> f(t) = [mm]\integral_{-\infty}^{\infty}{F(p) e^{ipt} dp}[/mm]
>  
> Für große t oszilliert die e-Funktion stark. Darum dachte
> ich, dass nur die Grundmode p=0 beiträgt. Also so etwas wie
>
> [mm]\limes_{t\rightarrow\infty} f(t) \sim F(p=0) [/mm]

Diese Überlegung klingt plausibel, aber probier's doch mal mit Beispielen!

Für beliebige Funktionen f(t) kann das nicht funktionieren; mindestens muss der Grenzwert überhaupt existieren. Wenn f(t) zum Beispiel eine periodische Funktion ist, geht es nicht. In diesem Fall ist F(p) aber auch keine Funktion, sondern eine nichtreguläre Distribution.

Also nehmen wir mal eine einfache Funktion: [mm] F(p) = \bruch{a}{a^2+p^2} [/mm]. Dazu gehört (bis auf einen Vorfaktor) $f(t) = [mm] e^{-a|t|}$. [/mm] Der Limes [mm] $\limes_{t\rightarrow\infty}f(t)=0$, [/mm] aber $F(0)= [mm] \bruch{1}{a}$. [/mm]

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de