www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Flächenvergleich
Flächenvergleich < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenvergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 02.05.2023
Autor: steve.joke

Aufgabe
Es sei eine Funktion h mit [mm] h(x)=-x^2+2bx, [/mm] b>1 gegeben.
Ein Hochpunkt des Graphen von h liegt im 1. Quadranten mit den Koordinaten [mm] (b/b^2) [/mm] auf einer Seite eines Quadrates. Es ist bekannt, dass zwei Seites dieses Quadrates auf den Koordinatenachsen liegen.

Zeige, dass für b=7 der Flächeninhalt des Quadrates mit dem Inhalt des Flächenstücks übereinstimmt, welches der Graph von h mit der x-Achse einschließt.

Hallo,

in der Lösung wird zunächst der Flächeninhalt der Funktion mit der x-Achse ermittelt, dieser beträgt [mm] A=\bruch{4}{3}b^3. [/mm] Das ist noch verständlich. Dann folgt aber:

Für b>1: [mm] \bruch{4}{3}b^3 [/mm] = [mm] (b^2)^2, [/mm] d.h.  [mm] b=\bruch{4}{3} [/mm]

Diesen Schritt verstehe ich nicht. wo kommt [mm] (b^2)^2 [/mm] her? Und benötigt man überhaupt die Info vom Hochpunkt? Wenn ja, wo?

Über Hilfe würde ich mich sehr freuen.

        
Bezug
Flächenvergleich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Di 02.05.2023
Autor: steve.joke

Tippfehler: Für b= 4/3

Bezug
        
Bezug
Flächenvergleich: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Di 02.05.2023
Autor: meili

Hallo steve.joke,

> Es sei eine Funktion h mit [mm]h(x)=-x^2+2bx,[/mm] b>1 gegeben.
> Ein Hochpunkt des Graphen von h liegt im 1. Quadranten mit
> den Koordinaten [mm](b/b^2)[/mm] auf einer Seite eines Quadrates. Es
> ist bekannt, dass zwei Seites dieses Quadrates auf den
> Koordinatenachsen liegen.
>  
> Zeige, dass für b=7 der Flächeninhalt des Quadrates mit
> dem Inhalt des Flächenstücks übereinstimmt, welches der
> Graph von h mit der x-Achse einschließt.
>  Hallo,
>  
> in der Lösung wird zunächst der Flächeninhalt der
> Funktion mit der x-Achse ermittelt, dieser beträgt
> [mm]A=\bruch{4}{3}b^3.[/mm] Das ist noch verständlich. Dann folgt
> aber:
>  
> Für b>1: [mm]\bruch{4}{3}b^3[/mm] = [mm](b^2)^2,[/mm] d.h.  [mm]b=\bruch{4}{3}[/mm]

Es soll ja gezeigt werden, dass ein beschriebenes Quadrat den gleichen Flächeninhalt hat wie die Funktion h mit der x-Achse einschließt.
Über das Quadrat steht in der Aufgabe folgendes:
Eine Seite des Quadrates liegt auf der x-Achse, eine Seite des Quadrates liegt auf der y-Achse und der Punkt [mm] $(b|b^2)$ [/mm] liegt auf einer Quadratseite.

Also hat das Quadrat die Eckpunkte $(0|0)$, [mm] $(b^2|0)$, $(b^2|b^2)$ [/mm] und [mm] $(0|b^2)$. [/mm]
Die Seitenlänge des Quadrates ist [mm] $b^2$, [/mm] deshalb ist seine Fläche [mm] $(b^2)^2$. [/mm]

>  
> Diesen Schritt verstehe ich nicht. wo kommt [mm](b^2)^2[/mm] her?
> Und benötigt man überhaupt die Info vom Hochpunkt? Wenn
> ja, wo?
>  
> Über Hilfe würde ich mich sehr freuen.

Gruß
meili

Bezug
                
Bezug
Flächenvergleich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 Di 02.05.2023
Autor: steve.joke

Besten Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de