www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächen zw. Funktionsgraphen
Flächen zw. Funktionsgraphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen zw. Funktionsgraphen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 12.05.2008
Autor: Ivan

Aufgabe
g(x)=x²-1 ;h(x)=x+1
Gleich setzten

Flächen zwischen den Schnittpunkten errechnen

Hallo alle zusammen!

Ich habe die oben gennante Aufgabe gerechnet und bekomme immer wieder das falsche Ergebniss raus könntet ihr mal schauen wo der Fehler sich verbirgt
Vielen Dank im vorraus für eure Hilfe
euer Ivan

Also:
Durch Gleichsetzungsverfahren bekomme ich: -x+2
Als Aufgeleitete Fkt. bekomme ich  [mm] F(x)=\bruch{1}{2}x²+2x [/mm]
Als Nullstelle bekomme ich nur eine die lautet: N(-2/0)
Als Ergebniss meines  Integragls bekomme ich: I= 6

Aber das Ergebniss sollte lauten : I= 4,5 ; N1(-1/0);N2(2/0)

        
Bezug
Flächen zw. Funktionsgraphen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mo 12.05.2008
Autor: Tyskie84

Hi,

> g(x)=x²-1 ;h(x)=x+1
>  Gleich setzten
>  
> Flächen zwischen den Schnittpunkten errechnen
>  Hallo alle zusammen!
>  
> Ich habe die oben gennante Aufgabe gerechnet und bekomme
> immer wieder das falsche Ergebniss raus könntet ihr mal
> schauen wo der Fehler sich verbirgt
>  Vielen Dank im vorraus für eure Hilfe
>  euer Ivan
>  
> Also:
>   Durch Gleichsetzungsverfahren bekomme ich: -x+2

[notok] Du musst [mm] \\g(x)=h(x) [/mm] setzen und dann umformen zu [mm] \\g(x)-h(x)=0 [/mm] Und damit die Schnittpunkte berechnen für die Grenzen.

>   Als Aufgeleitete Fkt. bekomme ich  
> [mm]F(x)=\bruch{1}{2}x²+2x[/mm]
>   Als Nullstelle bekomme ich nur eine die lautet: N(-2/0)
>   Als Ergebniss meines  Integragls bekomme ich: I= 6
>  
> Aber das Ergebniss sollte lauten : I= 4,5 ;
> N1(-1/0);N2(2/0)

[hut] Gruß


Bezug
                
Bezug
Flächen zw. Funktionsgraphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 12.05.2008
Autor: Ivan

wie meinst du das "umformen zu g(x)-h(x)" ich kann mir leider nichts darunter vorstellen sorry

Bezug
                        
Bezug
Flächen zw. Funktionsgraphen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mo 12.05.2008
Autor: Tyskie84

Hi,

Also es war doch [mm] g(x)=x^{2}-1 [/mm] und [mm] \\h(x)=x+1 [/mm]

Nun setze ich beide Funktionen gleich um die gemeinsamen Schnittpunkte zu bestimmen. Also g(x)=h(x):
[mm] \\x²-1=x+1 [/mm]
[mm] \Rightarrow \\x^2-1-x-1=0 [/mm]
[mm] \Rightarrow \\x^2-x-2=0´ [/mm]

Und das ist nichts anderes als [mm] \\g(x)-h(x)=0 [/mm]

[hut] Gruß

Bezug
                                
Bezug
Flächen zw. Funktionsgraphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Mo 12.05.2008
Autor: Ivan

Achso!

Danke für den Tipp!!
Ich werde mich dann mal gleich ans rechnen machen und hoffe das das nur der eizige fehler war

Vielen Vielen Dank für deine Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de