www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Faltung von Stetigen Dichtefkt
Faltung von Stetigen Dichtefkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Do 15.04.2010
Autor: jaruleking

Aufgabe
Hi, ich habe die folgenden Dichtefkt. gegeben:

[mm] f_X(x)=\lambda*e^{-\lambda* x} [/mm] für x>0 und 0 sonst

[mm] f_Y(y)=\lambda^2*y*e^{-\lambda* y} [/mm] für y>0  und 0 sonst.

So, jetzt will ich die gemeinsame Dichte von X+Y bestimmen.

So,

wir kennen ja jetzt die gleichung [mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}, [/mm] also setzen wir erstmal die Fkt. ein:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda*e^{-\lambda* x}\lambda^2*(z-x)*e^{-\lambda* (z-x)}dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda^3*(z-x)e^{-\lambda*z}dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{(\lambda^3*z*e^{-\lambda*z} - \lambda^3*x*e^{-\lambda*z})dx} [/mm]

= [mm] \integral_{-\infty}^{\infty}{\lambda^3*z*e^{-\lambda*z} dx} [/mm] - [mm] \integral_{-\infty}^{\infty}{\lambda^3*x*e^{-\lambda*z}dx} [/mm]


Hi, so jetzt kommen meine Fragen:

a) ich weiß, dass ich schon nach dem ersten Schritt, also nach der Formel, als ich die Fkten eingesetzt habe, hätte die Grenzen einsetzen müssen. Ich weiß gerade nur nicht, was ich dort einsetzen muss.

b) wie gehts jetzt weiter??

Wäre echt nett, wenn mir wer helfen könnte.

Grüße

        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 15.04.2010
Autor: Marc

Hallo jaruleking,


> a) ich weiß, dass ich schon nach dem ersten Schritt, also
> nach der Formel, als ich die Fkten eingesetzt habe, hätte
> die Grenzen einsetzen müssen. Ich weiß gerade nur nicht,
> was ich dort einsetzen muss.

Für [mm] $x\le0$ [/mm] verschwindet ja [mm] $f_X$ [/mm] und damit der Integrand, also kannst als untere Grenze 0 wählen.
Für [mm] $z-x\le0\ \gdw\ x\ge [/mm] z$ verschwindet [mm] $f_Y$, [/mm] also kannst du als obere Grenze z nehmen.

> b) wie gehts jetzt weiter??

Beachte, dass die Integrationsvariable $x$ ist und $z$ und [mm] $\lambda$ [/mm] bzgl. der Integration Konstanten sind. Damit dürfte es (auch ohne deine letzten Umformungsschritte) möglich sein, das Integral zu berechnen.

Viele Grüße,
Marc

Bezug
                
Bezug
Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 15.04.2010
Autor: jaruleking

Ist das dann so richtig, auch wenn ich meinen letzen Schritt mitnehme:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{z}^{0}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx} [/mm] $ - $ [mm] \integral_{z}^{0}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx} [/mm]

= [mm] [\lambda^3 z*x*e^{-\lambda\cdot{}z}] [/mm] - [mm] [\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}] [/mm]

= [mm] -\lambda^3 z^2*e^{-\lambda\cdot{}z} [/mm] + [mm] \bruch{z^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z} [/mm]

=> [mm] f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}z^2\bruch{3}{2} [/mm]

ist das so richtig?? oder fehler vorhanden? ...

Bezug
                        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 15.04.2010
Autor: steppenhahn

Hallo!

> Ist das dann so richtig, auch wenn ich meinen letzen
> Schritt mitnehme:
>  
> [mm]f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}[/mm]
>
> =
> [mm]\integral_{z}^{0}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx}[/mm]
>  [mm]-[/mm]
> [mm]\integral_{z}^{0}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx}[/mm]

Wieso gehen deine Integrale von z bis 0 ?
Sie müssen doch von 0 bis z gehen!

> = [mm][\lambda^3 z*x*e^{-\lambda\cdot{}z}][/mm] -
> [mm][\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}][/mm]
>  
> = [mm]-\lambda^3 z^2*e^{-\lambda\cdot{}z}[/mm] +
> [mm]\bruch{z^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}[/mm]

> => [mm]f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}z^2\bruch{3}{2}[/mm]

Hier hast du dich verrechnet.

-------

Was noch fehlt: Was passiert für z < 0? Das musst du alles angeben.

Grüße,
Stefan

Bezug
                                
Bezug
Faltung von Stetigen Dichtefkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Fr 16.04.2010
Autor: jaruleking

Hi nochmal.

dann müsste es ja so sein:

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx} [/mm]

= [mm] \integral_{0}^{z}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx} [/mm] - [mm] \integral_{0}^{z}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx} [/mm]

= [mm] [\lambda^3 z\cdot{}x\cdot{}e^{-\lambda\cdot{}z}] [/mm] - [mm] [\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}] [/mm]

[mm] f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}\bruch{z^2}{2} [/mm]

und für z<0 haben wir sicherlich 0. richtig so??

Was ich bei diesen typ von aufgaben nicht verstehe: wie bestimmt man die integrationsgrenzen?? ich hatte hier letztens auch schon mal ein beispiel, aber auch dort habe ich nicht so wirklich verstanden, wie man auf die integrationsgrenzen kam.

kann mir das vielleicht nochmal wer erklären??

Grüße


Bezug
                                        
Bezug
Faltung von Stetigen Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 16.04.2010
Autor: steppenhahn

Hallo!

> Hi nochmal.
>  
> dann müsste es ja so sein:
>  
> [mm]f_{X+Y}(z)=\integral_{-\infty}^{\infty}{f_X(x)f_Y(z-x) dx}[/mm]
>
> =
> [mm]\integral_{0}^{z}{\lambda^3\cdot{}z\cdot{}e^{-\lambda\cdot{}z} dx}[/mm]
> -
> [mm]\integral_{0}^{z}{\lambda^3\cdot{}x\cdot{}e^{-\lambda\cdot{}z}dx}[/mm]
>
> = [mm][\lambda^3 z\cdot{}x\cdot{}e^{-\lambda\cdot{}z}][/mm] -
> [mm][\bruch{x^2}{2}\lambda^3\cdot{}e^{-\lambda\cdot{}z}][/mm]
>
> [mm]f_{X+Y}(z)=\lambda^3e^{-\lambda\cdot{}z}\bruch{z^2}{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
> und für z<0 haben wir sicherlich 0. richtig so??

Genau. Beides ist richtig [ok] :-).


> Was ich bei diesen typ von aufgaben nicht verstehe: wie
> bestimmt man die integrationsgrenzen?? ich hatte hier
> letztens auch schon mal ein beispiel, aber auch dort habe
> ich nicht so wirklich verstanden, wie man auf die
> integrationsgrenzen kam.
>  
> kann mir das vielleicht nochmal wer erklären??

Die Integrationsgrenzen entstehen aufgrund deiner Dichtefunktionen.
Diese lauteten:

$ f_X(x)=\lambda\cdot{}e^{-\lambda\cdot{} x}*1_{\{x>0\}} = \begin{cases}\lambda\cdot{}e^{-\lambda\cdot{} x},\quad\mbox{ falls } x > 0\\ 0, \quad\quad\quad\quad\mbox{ falls } x\le 0 \end{cases}$

$ f_Y(y)=\lambda^2\cdot{}y\cdot{}e^{-\lambda\cdot{} y}*1_{\{y>0\}} = \begin{cases}\lambda^2\cdot{}y\cdot{}e^{-\lambda\cdot{} y} ,\quad\mbox{ falls } y > 0\\ 0, \quad\quad\quad\quad\quad\quad\mbox{ falls } y\le 0 \end{cases}$.

Nun erfolgt die Bestimmung deiner neuen Dichtefunktion:

$f_{X+Y}(z) = \int_{-\infty}^{\infty}f_{X}(x)*f_{Y}(z-x) dx$

$= \int_{-\infty}^{\infty}\Big(\lambda\cdot{}e^{-\lambda\cdot{} x}*1_{\{x>0\}}\Big)*\Big(\lambda^2\cdot{}(z-x)\cdot{}e^{-\lambda\cdot{} (z-x)}*1_{\{(z-x)>0\}}\Big) dx$.

Bis zu dieser Stelle kannst du das alles so hinschreiben.
Nun musst du aber die Indikatorfunktionen beachten!

Wenn die Indikatorfunktionen Null werden, wird der gesamte Integrand Null. Wir müssen also nicht über diese x integrieren, bei welchen die Indikatorfunktionen Null werden.
Die erste Indikatorfunktion sagt: $x > 0$.
Die zweite sagt: $z-x>0 \Leftrightarrow x < z$.

Das heißt: Nur falls $0 < x < z$, ist der Integrand ungleich 0.
Indem wir jetzt also nur von 0 bis z integrieren, können wir die Indikatorfunktionen entfernen, weil sie genau in diesem Bereich sowieso immer 1 sind.

Der nächste Schritt ist also:

$= \int_{0}^{z}\Big(\lambda\cdot{}e^{-\lambda\cdot{} x}}\Big)*\Big(\lambda^2\cdot{}(z-x)\cdot{}e^{-\lambda\cdot{} (z-x)}\Big) dx$.

Grüße,
Stefan

Bezug
                                                
Bezug
Faltung von Stetigen Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Fr 16.04.2010
Autor: jaruleking

SUPER VIELEN DANK MAL WIEDER FÜR DIE AUSFÜRHLICHE ERKLÄRUNG.

Grüße!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de