www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert transf. ZV
Erwartungswert transf. ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert transf. ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Sa 31.08.2019
Autor: Boogie2015

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo, an alle. Ich lerne momentan für die kommende Klausur in Stochastik und bei einer Sache bin ich mir nicht sicher. Und zwar wie man den Erwartungswert transformierter Zufallsvariablen berechnet.


Unsere Definition dazu im Skript lautet:



Sei $X: \Omega \rightarrow \overline{\mathbb{R}}$ eine Zufallsvariable, $g: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}$ Borel-messbar und $Y:= g \circ Y$.


Dann ist E[Y] = \begin{cases}
\sum\limits_{k \in X[\Omega]} g(k) \mathbb{P}[X = k]\; & \;\text{falls}\; X\; \text{diskret ist} \\
\int_{\mathbb{R}} g(x) f(x) dx \;  & \;\text{falls}\; X\; \text{die Dichte}\; f\; \text{hat}

\end{cases}$



Ich verstehe aber nicht genau, wie diese Definition anzuwenden ist.

Ich wollte diese Definition anhand folgender Beispiele mal  anwenden:



1. Beispiel
_________

$X: \Omega \rightarrow \overline{\mathbb{R}}$ diskret mit $X \sim Bin(n,p)$, $g: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}, x \mapsto x^{t}$ und $Y := g \circ X$

Dann gilt:


$E[Y]  = \sum\limits_{k \in X[\Omega]} g(k) \mathbb{P}[X = k] = \sum\limits_{k \in X[\Omega]} k^{t} \binom{n}{k} \cdot p^{k} \cdot (1 - p})^{n - k}$

Meine Frage an dieser Stelle ist: Wie kann ich das vereinfachen, so dass ich wieder einen ähnlichen Ausdruck wie $n \cdot p$ habe? Also ohne den ganzen Term jetzt vereinfachen zu müssen?


2. Beispiel
_________

$X: \Omega \rightarrow \overline{\mathbb{R}}$ stetig mit $X \sim Expo(\lambda)$, $g: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}, x \mapsto x^{t}$ und $Y := g \circ X$


$E[Y]  = \int_{\mathbb{R}} g(x) f(x) dx = \int_{\mathbb{R}} x^{k} \cdot  \lambda e^{- \lambda x}dx$



Passt das 2. Beispiel? Ich meine, wie man das Integral dann berechnet, ist klar. Mir ist nur die Anwendung der Definition  wichtig.





Lg, Boogie


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Erwartungswert transf. ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Sa 31.08.2019
Autor: Gonozal_IX

Hiho,

> 1. Beispiel
>  _________
>  
> [mm]X: \Omega \rightarrow \overline{\mathbb{R}}[/mm] diskret mit [mm]X \sim Bin(n,p)[/mm],
> [mm]g: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}, x \mapsto x^{t}[/mm]
> und [mm]Y := g \circ X[/mm]
>  
> Dann gilt:
>  
>
> [mm]E[Y] = \sum\limits_{k \in X[\Omega]} g(k) \mathbb{P}[X = k] = \sum\limits_{k \in X[\Omega]} k^{t} \binom{n}{k} \cdot p^{k} \cdot (1 - p})^{n - k}[/mm]

[ok]
  

> Meine Frage an dieser Stelle ist: Wie kann ich das
> vereinfachen, so dass ich wieder einen ähnlichen Ausdruck
> wie [mm]n \cdot p[/mm] habe? Also ohne den ganzen Term jetzt
> vereinfachen zu müssen?

Gar nicht. Für allgemeines [mm] $t\in\IR$ [/mm] ist das nicht mal eben so zu vereinfachen.


> 2. Beispiel
>  _________
>  
> [mm]X: \Omega \rightarrow \overline{\mathbb{R}}[/mm] stetig mit [mm]X \sim Expo(\lambda)[/mm],
> [mm]g: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}, x \mapsto x^{t}[/mm]
> und [mm]Y := g \circ X[/mm]
>  
>
> [mm]E[Y] = \int_{\mathbb{R}} g(x) f(x) dx = \int_{\mathbb{R}} x^{k} \cdot \lambda e^{- \lambda x}dx[/mm]

Bis auf die Tatsache, dass es    [mm] \int_{\mathbb{R}} x^{t} \cdot \lambda e^{- \lambda x}dx[/mm] [/mm] sein müsste, stimmt das.

> Passt das 2. Beispiel? Ich meine, wie man das Integral dann berechnet, ist klar.

Ist es das? ;-) Auch hier: Für allgemeines [mm] $t\in\IR$ [/mm] existiert kein geschlossener Ausdruck. Für [mm] $t\in\IN$ [/mm] schon.

Aber ansonsten stimmt es.

Lapidar ausgedrückt: Ersetze jeweils den ersten Faktor im Ausdruck durch den Funktionsausdruck… der Rest bleibt, wie er ist.

Gruß,
Gono

Bezug
                
Bezug
Erwartungswert transf. ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Di 03.09.2019
Autor: Boogie2015

Okay, vielen Dank für deine Hilfe :-) Die Frage war vielleicht etwas unnötig, aber ich wollte sicher gehen. Ich wünsche dir sonst noch einen schönen Tag!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de