www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte Minimalpolynom
Eigenwerte Minimalpolynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:33 Di 08.05.2018
Autor: Max34

Aufgabe
Hallo,
ich bins gleich nochmal: Ich habe folgende Aufgabenstellung:
Man zeige für f [mm] \n End_K(V [/mm] ), mit V ein endlich dimensionaler Vektorraum
über einen algebraisch abgeschlossenen Körper: alle Linearfaktoren des charakteristischen Polynoms [mm] p_f [/mm] kommen im Minimalpolynom [mm] p_f [/mm] mit Vielfachheit  [mm] \geq [/mm]  1 vor.

Meine Überlegungen:
Da K algebraisch abgeschlossen ist zerfällt [mm] p_f [/mm] in Linaerfaktoren
also [mm] p_f =(x-a_1)^{p_1}....(x-a_n)^{p_n} [/mm] mit Nullstellen [mm] a_i \in [/mm] K und [mm] p_i \in \mathbb [/mm] N
Dann sei [mm] \lambda [/mm] Eigenwert zu Eigenvektor v [mm] \ne [/mm] 0 .
Es gilt f(v)= [mm] \lambda [/mm] v
Dann gibt es noch die Möglichkeit den EV v als Basiselement der Basis von EV, die V aufspannen, zu sehen.
Da [mm] p_f [/mm] in Linearfaktoren zerfällt, gibt es n EW, wobei dann die zugehörige Abbildungsmatrix [mm] A_f [/mm] Diagonalgestalt mit den EW auf der Diagonalen.
Komme ich damit weiter?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Di 08.05.2018
Autor: hippias

Nein, dieser Ansatz führt nicht zum Erfolg, weil $f$ keineswegs diagonalisierbar sein muss.

Je nach dem, was Dein Vorwissen über das Minimalpolynom ist, gibt es viele Möglichkeite einen Beweis zu führen. Ich schlage jedenfalls einen Widerspruchsbeweis vor, indem Du dann die Teilerfremdheit von [mm] $x-a_{i}$ [/mm] und dem Minimalpolynom ausnutzt (Euklidischer Algorithmus).

Bezug
                
Bezug
Eigenwerte Minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Sa 12.05.2018
Autor: Max34

Danke. Ich habe es hinbekommen:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de