www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert nur 0 und 1
Eigenwert nur 0 und 1 < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert nur 0 und 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:53 Di 20.04.2010
Autor: ChopSuey

Aufgabe
Sei $\ V $ ein Vektorraum und $\ [mm] \varphi [/mm] : V [mm] \to [/mm] V $ ein Endomorphismus mit $\ [mm] \varphi^2 [/mm] = [mm] \varphi [/mm] $

Zeigen Sie, dass $\ [mm] \varphi$ [/mm] nur Eigenwerte $\ 0 $ und $\ 1 $ haben kann.

Hallo,

zu Zeigen, dass $\ 1 $ ein Eigenwert von $\ [mm] \varphi [/mm] $ ist ging schnell.

Allerdings kann ich einfach nicht zeigen, dass $\ 0 $ ebenfalls Eigenwert sein muss. Im Gegenteil. Jedesmal, wenn ich das versuche, stoße ich auf einen Widerspruch.

Bsp:

$\ [mm] \varphi^2 [/mm] = [mm] \varphi [/mm] $

Es ist $\ [mm] \varphi(\varphi(v)) [/mm] = [mm] \varphi(v) \gdw \varphi(v) [/mm] = v $

$\ [mm] \lambda \in \IK [/mm] $ ist Eigenwert von $\ [mm] \varphi \gdw \varphi(v) [/mm] = [mm] \lambda [/mm] v $ für $\ v [mm] \in \IK [/mm] $ und $\ v [mm] \not= [/mm] 0 $

Nach Voraussetzung ist
$\ [mm] \varphi(v) [/mm] = [mm] \lambda [/mm] v $
$\ [mm] \gdw \varphi(v) [/mm] = [mm] \lambda \varphi(v) [/mm] $
$\ [mm] \gdw \varphi(v) [/mm] =  [mm] \varphi(\lambda [/mm] v) $
$\ [mm] \gdw [/mm] v = [mm] \lambda [/mm] v $
$\ [mm] \gdw [/mm] v - [mm] \lambda [/mm] v = 0 $
$\ [mm] \gdw v(1-\lambda) [/mm] = 0 $

Das hat nur die Lösung $\ [mm] \lambda [/mm] = 1 $.

Für $\ [mm] \lambda [/mm] = 0 $ folgt $\ v = 0 $ was zum Widerspruch führt.

Wo liegt mein Fehler? Kann es sein, dass ich irgendwo heimlich durch Null geteilt hab? Das wär' übel.

Freue mich über Hilfe.
Grüße
ChopSuey

        
Bezug
Eigenwert nur 0 und 1: Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 Di 20.04.2010
Autor: schachuzipus

Hallo ChopSuey,

> Sei [mm]\ V[/mm] ein Vektorraum und [mm]\ \varphi : V \to V[/mm] ein
> Endomorphismus mit [mm]\ \varphi^2 = \varphi[/mm]
>  
> Zeigen Sie, dass [mm]\ \varphi[/mm] nur Eigenwerte [mm]\ 0[/mm] und [mm]\ 1[/mm] haben
> kann.
>  Hallo,
>  
> zu Zeigen, dass [mm]\ 1[/mm] ein Eigenwert von [mm]\ \varphi[/mm] ist ging
> schnell.
>  
> Allerdings kann ich einfach nicht zeigen, dass [mm]\ 0[/mm]
> ebenfalls Eigenwert sein muss. Im Gegenteil. Jedesmal, wenn
> ich das versuche, stoße ich auf einen Widerspruch.
>  
> Bsp:
>  
> [mm]\ \varphi^2 = \varphi[/mm]
>  
> Es ist [mm]\ \varphi(\varphi(v)) = \varphi(v) \gdw \varphi(v) = v[/mm]
>
> [mm]\ \lambda \in \IK[/mm] ist Eigenwert von [mm]\ \varphi \gdw \varphi(v) = \lambda v[/mm]
> für [mm]\ v \in \IK[/mm] und [mm]\ v \not= 0[/mm] [ok]
>  
> Nach Voraussetzung ist
> [mm]\ \varphi(v) = \lambda v[/mm]
>  [mm]\ \gdw \varphi(v) = \lambda \varphi(v)[/mm]
>  
> [mm]\ \gdw \varphi(v) = \varphi(\lambda v)[/mm]
>  [mm]\ \gdw v = \lambda v[/mm]
> [mm]\ \gdw v - \lambda v = 0[/mm]
>  [mm]\ \gdw v(1-\lambda) = 0[/mm]
>  
> Das hat nur die Lösung [mm]\ \lambda = 1 [/mm].
>  
> Für [mm]\ \lambda = 0[/mm] folgt [mm]\ v = 0[/mm] was zum Widerspruch
> führt.
>  
> Wo liegt mein Fehler? Kann es sein, dass ich irgendwo
> heimlich durch Null geteilt hab? Das wär' übel.

Es ist [mm] $\varphi(v)=\lambda v=\varphi^2(v)=\varphi(\varphi(v))=\varphi(\lambda v)=\lambda\varphi(v)=\lambda(\lambda v)=\lambda^2 [/mm] v$

Also [mm] $\lambda^2 v=\lambda [/mm] v$ mit [mm] $v\neq [/mm] 0$

Damit ...

> Freue mich über Hilfe.
>  Grüße
>  ChopSuey

LG

schachuzipus

Bezug
                
Bezug
Eigenwert nur 0 und 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Di 20.04.2010
Autor: ChopSuey

Morgen Schachuzipus,

> Hallo ChopSuey,
>  
> > Sei [mm]\ V[/mm] ein Vektorraum und [mm]\ \varphi : V \to V[/mm] ein
> > Endomorphismus mit [mm]\ \varphi^2 = \varphi[/mm]
>  >  
> > Zeigen Sie, dass [mm]\ \varphi[/mm] nur Eigenwerte [mm]\ 0[/mm] und [mm]\ 1[/mm] haben
> > kann.
>  >  Hallo,
>  >  
> > zu Zeigen, dass [mm]\ 1[/mm] ein Eigenwert von [mm]\ \varphi[/mm] ist ging
> > schnell.
>  >  
> > Allerdings kann ich einfach nicht zeigen, dass [mm]\ 0[/mm]
> > ebenfalls Eigenwert sein muss. Im Gegenteil. Jedesmal, wenn
> > ich das versuche, stoße ich auf einen Widerspruch.
>  >  
> > Bsp:
>  >  
> > [mm]\ \varphi^2 = \varphi[/mm]
>  >  
> > Es ist [mm]\ \varphi(\varphi(v)) = \varphi(v) \gdw \varphi(v) = v[/mm]
> >
> > [mm]\ \lambda \in \IK[/mm] ist Eigenwert von [mm]\ \varphi \gdw \varphi(v) = \lambda v[/mm]
> > für [mm]\ v \in \IK[/mm] und [mm]\ v \not= 0[/mm] [ok]
>  >  
> > Nach Voraussetzung ist
> > [mm]\ \varphi(v) = \lambda v[/mm]
>  >  [mm]\ \gdw \varphi(v) = \lambda \varphi(v)[/mm]
>  
> >  

> > [mm]\ \gdw \varphi(v) = \varphi(\lambda v)[/mm]
>  >  [mm]\ \gdw v = \lambda v[/mm]
> > [mm]\ \gdw v - \lambda v = 0[/mm]
>  >  [mm]\ \gdw v(1-\lambda) = 0[/mm]
>  >  
> > Das hat nur die Lösung [mm]\ \lambda = 1 [/mm].
>  >  
> > Für [mm]\ \lambda = 0[/mm] folgt [mm]\ v = 0[/mm] was zum Widerspruch
> > führt.
>  >  
> > Wo liegt mein Fehler? Kann es sein, dass ich irgendwo
> > heimlich durch Null geteilt hab? Das wär' übel.
>  
> Es ist [mm]\varphi(v)=\lambda v=\varphi^2(v)=\varphi(\varphi(v))=\varphi(\lambda v)=\lambda\varphi(v)=\lambda(\lambda v)=\lambda^2 v[/mm]
>  
> Also [mm]\lambda^2 v=\lambda v[/mm] mit [mm]v\neq 0[/mm]
>  
> Damit ...


Ahh, natürlich. Und doch habe ich's die ganze Zeit nicht gesehen ;-)
Vielen Dank für Deine schnelle Hilfe!

>  
> > Freue mich über Hilfe.
>  >  Grüße
>  >  ChopSuey
>
> LG
>  
> schachuzipus

Viele Grüße
ChopSuey

Bezug
        
Bezug
Eigenwert nur 0 und 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:56 Di 20.04.2010
Autor: fred97


> Sei [mm]\ V[/mm] ein Vektorraum und [mm]\ \varphi : V \to V[/mm] ein
> Endomorphismus mit [mm]\ \varphi^2 = \varphi[/mm]
>  
> Zeigen Sie, dass [mm]\ \varphi[/mm] nur Eigenwerte [mm]\ 0[/mm] und [mm]\ 1[/mm] haben
> kann.
>  Hallo,
>  
> zu Zeigen, dass [mm]\ 1[/mm] ein Eigenwert von [mm]\ \varphi[/mm] ist ging
> schnell.

Na, na, wenn [mm] \varphi= [/mm] 0 ist ,so ist 1 kein Eigenwert !



Für [mm] \varphi [/mm] mit [mm] \varphi= \varphi^2 [/mm] gilt:

[mm] \varphi \ne [/mm] 0 und [mm] \varphi \ne [/mm] id [mm] \gdw \varphi [/mm] hat die Eigenwerte 0 und 1

[mm] \varphi= [/mm] 0 [mm] \gdw \varphi [/mm] hat nur den Eigenwert 0

[mm] \varphi= [/mm] id  [mm] \gdw \varphi [/mm] hat nur den Eigenwert 1

FRED

>  
> Allerdings kann ich einfach nicht zeigen, dass [mm]\ 0[/mm]
> ebenfalls Eigenwert sein muss. Im Gegenteil. Jedesmal, wenn
> ich das versuche, stoße ich auf einen Widerspruch.
>  
> Bsp:
>  
> [mm]\ \varphi^2 = \varphi[/mm]
>  
> Es ist [mm]\ \varphi(\varphi(v)) = \varphi(v) \gdw \varphi(v) = v[/mm]
>
> [mm]\ \lambda \in \IK[/mm] ist Eigenwert von [mm]\ \varphi \gdw \varphi(v) = \lambda v[/mm]
> für [mm]\ v \in \IK[/mm] und [mm]\ v \not= 0[/mm]
>  
> Nach Voraussetzung ist
> [mm]\ \varphi(v) = \lambda v[/mm]
>  [mm]\ \gdw \varphi(v) = \lambda \varphi(v)[/mm]
>  
> [mm]\ \gdw \varphi(v) = \varphi(\lambda v)[/mm]
>  [mm]\ \gdw v = \lambda v[/mm]
> [mm]\ \gdw v - \lambda v = 0[/mm]
>  [mm]\ \gdw v(1-\lambda) = 0[/mm]
>  
> Das hat nur die Lösung [mm]\ \lambda = 1 [/mm].
>  
> Für [mm]\ \lambda = 0[/mm] folgt [mm]\ v = 0[/mm] was zum Widerspruch
> führt.
>  
> Wo liegt mein Fehler? Kann es sein, dass ich irgendwo
> heimlich durch Null geteilt hab? Das wär' übel.
>  
> Freue mich über Hilfe.
>  Grüße
>  ChopSuey


Bezug
                
Bezug
Eigenwert nur 0 und 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Di 20.04.2010
Autor: ChopSuey

Hallo Fred,

die Fälle $\ [mm] \varphi [/mm] = 0 $ und $\ [mm] \varphi [/mm] = id $ hab' ich garnicht in Betracht gezogen. Vielen Dank für die Hinweise!

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de