www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Doppelintegral lösen
Doppelintegral lösen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 So 25.03.2018
Autor: Pacapear

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Berechne das folgende Integral:

$\int_1^a \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy dx$

Hallo zusammen!

Ich soll das obige Integral berechnen.

Ich bin so weit gekommen:

$\int_1^a \left( \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy \right) dx$

$= \int_1^a \left( \left[ \frac{1}{x^3} * x * e^{\frac{y}{x}} \right]_{y=0}^{y=b} \right) dx$

$= \int_1^a \left( \left[ \frac{1}{x^2} * e^{\frac{y}{x}} \right]_{y=0}^{y=b} \right) dx$

$= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} -  \frac{1}{x^2} \right) dx$

$= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} \right) dx$ - $\int_1^a \frac{1}{x^2} dx$

Ich habe jetzt versucht, das erste Integral mit partieller Integration zu lösen, dazu habe ich \frac{1}{x^2} als $g$ gewählt und e^{\frac{b}{x}} als $f'$.

Dann bekomme ich für $g'=-\frac{2}{x^3}$ und für $f=-\frac{x^2}{b}e^{\frac{b}{x}}$.

Damit kriege ich weiter

$= \left[ -\frac{x^2}{b} e^{\frac{b}{x}} \right]_1^a - \int_1^a -\frac{x^2}{b} e^{\frac{b}{x}} * \left( -\frac{2}{x^3} \right) dx - \left[ -\frac{1}{x} \right]_1^a$

$= \left[ -\frac{x^2}{b} e^{\frac{b}{x}} \right]_1^a - \frac{2}{b} \int_1^a \frac{1}{x} e^{\frac{b}{x}} \right) dx - \left[ -\frac{1}{x} \right]_1^a$

Ich weiß nicht, wie ich jetzt weiter machen soll. Wenn ich nochmal partielle Integration anwende, bekomme ich ja einen $\ln$ da rein.

Weiß jemand, was ich machen muss?

Danke und VG,

Nadine

        
Bezug
Doppelintegral lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 So 25.03.2018
Autor: Diophant

Hallo,

> Berechne das folgende Integral:

>

> [mm]\int_1^a \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy dx[/mm]

>

> Ich soll das obige Integral berechnen.

>

> Ich bin so weit gekommen:

>

> [mm]\int_1^a \left( \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy \right) dx[/mm]

>

> [mm]= \int_1^a \left( \left[ \frac{1}{x^3} * x * e^{\frac{y}{x}} \right]_{y=0}^{y=b} \right) dx[/mm]

>

> [mm]= \int_1^a \left( \left[ \frac{1}{x^2} * e^{\frac{y}{x}} \right]_{y=0}^{y=b} \right) dx[/mm]

>

> [mm]= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} - \frac{1}{x^2} \right) dx[/mm]

>

> [mm]= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} \right) dx[/mm]
> - [mm]\int_1^a \frac{1}{x^2} dx[/mm]

>

Das ist bis dahin richtig* und es war auch eine gute Idee, die Differenz im Integranden in zwei Integrale aufzuteilen. [ok]

*EDIT: nicht ganz, siehe dazu die Mitteilung von HJKweseleit. Der Tipp mit der Substitution bleibt dennoch gültig.

> Ich habe jetzt versucht, das erste Integral mit partieller
> Integration zu lösen...

Das mit der partiellen Integration ist hier nicht zielführend, egal wie man die Faktoren f' und g wählt (sofern ich mich nicht irre).

Verwende die Substition

[mm] u(x)=\frac{1}{x} [/mm]

dann hat der (erste) Integrand nämlich sofort die Gestalt

[mm]-u'*e^{b*u}[/mm]

und man kann das Integral im Prinzip durch 'scharfes Hinsehen' erhalten (-> Kettenregel). Für den zweiten Integranden läuft es (bei Verwendung der korrekten Integrationsgrenzen für die Integration nach y) genauso.


Gruß, Diophant
 

Bezug
                
Bezug
Doppelintegral lösen: Richtig so?
Status: (Frage) beantwortet Status 
Datum: 22:19 So 25.03.2018
Autor: Pacapear

Hallo!


>  > [mm]= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} \right) dx[/mm] - [mm]\int_1^a \frac{1}{x^2} dx[/mm]

>  >
>  
> Das ist bis dahin richtig* und es war auch eine gute Idee,
> die Differenz im Integranden in zwei Integrale aufzuteilen.
> [ok]
>  
> *EDIT: nicht ganz, siehe dazu die Mitteilung von
> HJKweseleit. Der Tipp mit der Substitution bleibt dennoch
> gültig.
>  
> > Ich habe jetzt versucht, das erste Integral mit partieller
>  > Integration zu lösen...

>  
> Das mit der partiellen Integration ist hier nicht
> zielführend, egal wie man die Faktoren f' und g wählt
> (sofern ich mich nicht irre).
>  
> Verwende die Substition
>  
> [mm]u(x)=\frac{1}{x}[/mm]
>  
> dann hat der (erste) Integrand nämlich sofort die Gestalt
>  
> [mm]-u'*e^{b*u}[/mm]
>  
> und man kann das Integral im Prinzip durch 'scharfes
> Hinsehen' erhalten (-> Kettenregel).

Ich habe jetzt dann folgendes:

Die Substitution ist:

[mm] $t=\frac{1}{x} \Rightarrow t'=-\frac{1}{x^2} \Rightarrow dx=-x^2*dt$ [/mm]

Dann folgt für das Integral:

[mm]= \int_1^a \left( \frac{1}{x^2} * e^{b*\frac{1}{x}} \right) dx[/mm] - [mm]\int_1^a \frac{1}{x^2} dx[/mm]

[mm]= \int_1^{\frac{1}{a}} \frac{1}{x^2} * e^{b*t} (-x^2)*dt[/mm] - [mm]\int_1^a \frac{1}{x^2} dx[/mm]

[mm]= - \int_1^{\frac{1}{a}} e^{b*t} dt[/mm] - [mm]\int_1^a \frac{1}{x^2} dx[/mm]

$= [mm] \left[ \frac{1}{b}e^{bt} \right]_1^{\frac{1}{a}} [/mm] - [mm] \left[ -\frac{1}{x} \right]_1^a$ [/mm]

$= [mm] \left[ \frac{1}{b}e^{bt} \right]_1^{\frac{1}{a}} [/mm] + [mm] \left[ \frac{1}{x} \right]_1^a$ [/mm]

$- [mm] \frac{1}{b} e^{\frac{b}{a}} [/mm] - [mm] \frac{1}{b} e^b [/mm] + [mm] \frac{1}{a} [/mm] - 1$

Ist das so richtig?



> Für den zweiten
> Integranden läuft es (bei Verwendung der korrekten
> Integrationsgrenzen für die Integration nach y) genauso.

Das zweite Integral [mm]\int_1^a \frac{1}{x^2} dx[/mm] kann ich doch direkt aufleiten, oder nicht?



VG Nadine

Bezug
                        
Bezug
Doppelintegral lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Mo 26.03.2018
Autor: fred97


> Hallo!
>  
>
> >  > [mm]= \int_1^a \left( \frac{1}{x^2} * e^{\frac{b}{x}} \right) dx[/mm]

> - [mm]\int_1^a \frac{1}{x^2} dx[/mm]
>  >  >
>  >  
> > Das ist bis dahin richtig* und es war auch eine gute Idee,
> > die Differenz im Integranden in zwei Integrale aufzuteilen.
> > [ok]
>  >  
> > *EDIT: nicht ganz, siehe dazu die Mitteilung von
> > HJKweseleit. Der Tipp mit der Substitution bleibt dennoch
> > gültig.
>  >  
> > > Ich habe jetzt versucht, das erste Integral mit partieller
>  >  > Integration zu lösen...

>  >  
> > Das mit der partiellen Integration ist hier nicht
> > zielführend, egal wie man die Faktoren f' und g wählt
> > (sofern ich mich nicht irre).
>  >  
> > Verwende die Substition
>  >  
> > [mm]u(x)=\frac{1}{x}[/mm]
>  >  
> > dann hat der (erste) Integrand nämlich sofort die Gestalt
>  >  
> > [mm]-u'*e^{b*u}[/mm]
>  >  
> > und man kann das Integral im Prinzip durch 'scharfes
> > Hinsehen' erhalten (-> Kettenregel).
>
> Ich habe jetzt dann folgendes:
>  
> Die Substitution ist:
>  
> [mm]t=\frac{1}{x} \Rightarrow t'=-\frac{1}{x^2} \Rightarrow dx=-x^2*dt[/mm]
>  
> Dann folgt für das Integral:
>  
> [mm]= \int_1^a \left( \frac{1}{x^2} * e^{b*\frac{1}{x}} \right) dx[/mm]
> - [mm]\int_1^a \frac{1}{x^2} dx[/mm]
>  
> [mm]= \int_1^{\frac{1}{a}} \frac{1}{x^2} * e^{b*t} (-x^2)*dt[/mm] -
> [mm]\int_1^a \frac{1}{x^2} dx[/mm]
>  
> [mm]= - \int_1^{\frac{1}{a}} e^{b*t} dt[/mm] - [mm]\int_1^a \frac{1}{x^2} dx[/mm]
>  
> [mm]= \left[ \frac{1}{b}e^{bt} \right]_1^{\frac{1}{a}} - \left[ -\frac{1}{x} \right]_1^a[/mm]
>  
> [mm]= \left[ \frac{1}{b}e^{bt} \right]_1^{\frac{1}{a}} + \left[ \frac{1}{x} \right]_1^a[/mm]
>  
> [mm]- \frac{1}{b} e^{\frac{b}{a}} - \frac{1}{b} e^b + \frac{1}{a} - 1[/mm]
>  
> Ist das so richtig?

Nicht ganz.  Es lautet : [mm]- \frac{1}{b} e^{\frac{b}{a}} +\frac{1}{b} e^b + \frac{1}{a} - 1[/mm]

>  
>
>
> > Für den zweiten
> > Integranden läuft es (bei Verwendung der korrekten
> > Integrationsgrenzen für die Integration nach y) genauso.
>  
> Das zweite Integral [mm]\int_1^a \frac{1}{x^2} dx[/mm] kann ich doch
> direkt aufleiten, oder nicht?

Nein , kannst Du nicht. Was soll aufleiten sein ? In meinem Wortschatz gibt es das nicht.

Du kannst das Integral direkt berechnen, was Du ja auch getan hast,

>  
>
>
> VG Nadine


Bezug
        
Bezug
Doppelintegral lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 So 25.03.2018
Autor: HJKweseleit


> Berechne das folgende Integral:
>  
> [mm]\int_1^a \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy dx[/mm]
>  
> Hallo zusammen!
>  
> Ich soll das obige Integral berechnen.
>  
> Ich bin so weit gekommen:
>  
> [mm]\int_1^a \left( \int_1^b \frac{1}{x^3} e^{\frac{y}{x}} dy \right) dx[/mm]
>  
> [mm]= \int_1^a \left( \left[ \frac{1}{x^3} * x * e^{\frac{y}{x}} \right]_{y=0}^{y=b} \right) dx[/mm]
>  

Ist die Untergrenze für y nicht 1 statt 0?




Bezug
                
Bezug
Doppelintegral lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 So 25.03.2018
Autor: Pacapear

Hallo!

> Ist die Untergrenze für y nicht 1 statt 0?

0 ist richtig.

Das war ein Tippfehler, der mir beim Drüberlesen leider durchgegangen ist.

VG Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de