www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Diophantische Gleichung 3 Var
Diophantische Gleichung 3 Var < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diophantische Gleichung 3 Var: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Do 21.06.2018
Autor: mathelernender

Aufgabe
Gib die Lösungsmenge für 15x + 57y + 39z = 21 an

Hallo,
ich habe ein Problem beim Lösen der Aufgabe. Mit 2 Variablen kann ich das problemlos bearbeiten, bei 3 wird es dann schon kniffelig.

Ich beschreibe kurz mein Vorgehen, was ich bisher gemacht habe:

zunächst teile ich die Gleichung durch 3:

5x + 19y + 13z = 7

der ggt(5,19,13) ist 1, d.h. die Gleichung ist lösbar (weil 1 | 7).

Ich betrachte zunächst 5x + 19y = ggt(5,19) = 1

Daraus erhalte ich eine konkrete Lösung x=4,y=-1. Die allgemeine Lösung kann ich auch daraus konstruieren.

Jetzt betrachte ich (5*4 + 19*-1) * x' + 13z = ggt(ggt(5,19),13) = 1.

Ich erhalte x' = 1, z = 0.

bzw. x = 28,y=-7,z=0 für die ursprüngliche Gleichung, die das System löst (kann man per Probe feststellen).

Wie gebe ich für 3 Variablen die allgemeine Lösung an? Oder habe ich schon irgendwo einen Fehler gemacht, weil z=0?

        
Bezug
Diophantische Gleichung 3 Var: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Do 21.06.2018
Autor: Diophant

Hallo,

> Gib die Lösungsmenge für 15x + 57y + 39z = 21 an
> Hallo,
> ich habe ein Problem beim Lösen der Aufgabe. Mit 2
> Variablen kann ich das problemlos bearbeiten, bei 3 wird es
> dann schon kniffelig.

>

> Ich beschreibe kurz mein Vorgehen, was ich bisher gemacht
> habe:

>

> zunächst teile ich die Gleichung durch 3:

>

> 5x + 19y + 13z = 7

>

> der ggt(5,19,13) ist 1, d.h. die Gleichung ist lösbar
> (weil 1 | 7).

>

> Ich betrachte zunächst 5x + 19y = ggt(5,19) = 1

>

> Daraus erhalte ich eine konkrete Lösung x=4,y=-1. Die
> allgemeine Lösung kann ich auch daraus konstruieren.

>

> Jetzt betrachte ich (5*4 + 19*-1) * x' + 13z =
> ggt(ggt(5,19),13) = 1.

>

> Ich erhalte x' = 1, z = 0.

>

> bzw. x = 28,y=-7,z=0 für die ursprüngliche Gleichung, die
> das System löst (kann man per Probe feststellen).

>

> Wie gebe ich für 3 Variablen die allgemeine Lösung an?
> Oder habe ich schon irgendwo einen Fehler gemacht, weil
> z=0?

Du hast keinen Fehler gemacht, aber das ist ja nur eine partikuläre Lösung. Im Falle einer Gleichung mit zwei Unbekannten könntest du jetzt die zugehörige homogene Gleichung allgemein lösen und diese Lösungen zu der partikulären Lösung addieren. Bei drei oder mehr Unbekannten funktioniert das aber nicht.

Wende das sog. Eulersche Reduktionsverfahren an. Du kannst unter diesem Begriff selbst im Internet suchen, es gibt jedoch auf den Mathematikseiten von Arndt Brünner eine sehr anschauliche []Erklärung des erwähnten Verfahrens, die du hier 1:1 übernehmen kannst.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de