Dachprodukt: Kern und Bild < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:00 Do 24.11.2016 | Autor: | redhorse |
Aufgabe | Die lineare Abb. $ [mm] \phi [/mm] : [mm] \mathbb{R}^3 \rightarrow \mathbb{R}^3 [/mm] $ ist gegeben durch die Matrix
$ [mm] \begin{pmatrix} 2 && -1 && 1 \\ 1 && 2 && 3 \\ 0 && 1 && 1 \end{pmatrix} [/mm] $
Bestimme $ [mm] \ker(\wedge^2\phi) [/mm] $ und $ [mm] \Im(\wedge^2\phi) [/mm] $. |
Hi.
Also,
$ [mm] \wedge^2\phi: \wedge^2\mathbb{R}^3 \rightarrow \wedge^2\mathbb{R}^3 [/mm] $ ist die lineare Abb. von der ich die Darstellungsmatrix brauche um Kern und Bild zu bestimmen. Dabei nehme ich die Basis $ [mm] (e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3) [/mm] $, wobei $ [mm] e_1,e_2,e_3 [/mm] $ die Standardbasis von $ [mm] \mathbb{R}^3 [/mm] $ ist.
Um die Spalten der Darstellungsmatrix zu bestimmen, gehe ich wie bei "normalen" [mm] $\mathbb{R} [/mm] $-Vektorräumen vor:
1. Spalte:
[mm] $\wedge^2\phi(e_1 \wedge e_2) [/mm] = [mm] \phi(e_1) \wedge \phi(e_2) [/mm] $
$ = [mm] \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} [/mm] $
= $ [mm] (2e_1 [/mm] + [mm] e_2) \wedge (-e_1 [/mm] + [mm] 2e_2 [/mm] + [mm] e_3) [/mm] $
= [mm] $2e_1 \wedge -e_1 [/mm] + [mm] 2e_1 \wedge 2e_2 [/mm] + [mm] 2e_1 \wedge e_3 [/mm] + [mm] e_2 \wedge -e_1 [/mm] + [mm] e_2 \wedge 2e_2 [/mm] + [mm] e_2 \wedge e_3 [/mm] $
= $ [mm] 5e_1 \wedge e_2 [/mm] + [mm] 2e_1 \wedge e_3 [/mm] + [mm] e_2 \wedge e_3 [/mm] $
also ist die erste Spalte: $ [mm] \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} [/mm] $
für die 2. und 3. Spalte erhalte ich analog: $ [mm] \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} [/mm] $ und $ [mm] \begin{pmatrix} -5 \\ -2 \\ -1 \end{pmatrix} [/mm] $
Also ist die Darstellungsmatrix: $A := [mm] \begin{pmatrix} 5 && 5 && -5 \\ 2 && 2 && -2 \\ 1 && 1 && -1 \end{pmatrix} [/mm] $
Aber wie berrechne ich nun Kern und Bild?
Wäre ich wieder in einem normalen $ [mm] \mathbb{R} [/mm] $-Vektorraum, dann wäre:
$ [mm] \ker(A) [/mm] = < [mm] \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} [/mm] > $
$ [mm] \Im(A) [/mm] = [mm] <\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}> [/mm] $
Ist dann
$ [mm] \ker(\wedge^2\phi) [/mm] = [mm] <\begin{pmatrix} x_1 \wedge x_2 \\ 0 \\ x_1 \wedge x_2 \end{pmatrix}, \begin{pmatrix} -x_1 \wedge x_2 \\ x_1 \wedge x_2 \\ 0 \end{pmatrix}> [/mm] $ mit [mm] $x_1,x_2 \in \mathbb{R}^3 [/mm] $ ?
MfG
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=224124
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:22 Do 24.11.2016 | Autor: | hippias |
> Die lineare Abb. [mm]\phi : \mathbb{R}^3 \rightarrow \mathbb{R}^3[/mm]
> ist gegeben durch die Matrix
> [mm]\begin{pmatrix} 2 && -1 && 1 \\ 1 && 2 && 3 \\ 0 && 1 && 1 \end{pmatrix}[/mm]
>
> Bestimme [mm]\ker(\wedge^2\phi)[/mm] und [mm]\Im(\wedge^2\phi) [/mm].
> Hi.
>
> Also,
> [mm]\wedge^2\phi: \wedge^2\mathbb{R}^3 \rightarrow \wedge^2\mathbb{R}^3[/mm]
> ist die lineare Abb. von der ich die Darstellungsmatrix
> brauche um Kern und Bild zu bestimmen. Dabei nehme ich die
> Basis [mm](e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3) [/mm],
> wobei [mm]e_1,e_2,e_3[/mm] die Standardbasis von [mm]\mathbb{R}^3[/mm] ist.
>
> Um die Spalten der Darstellungsmatrix zu bestimmen, gehe
> ich wie bei "normalen" [mm]\mathbb{R} [/mm]-Vektorräumen vor:
>
> 1. Spalte:
> [mm]\wedge^2\phi(e_1 \wedge e_2) = \phi(e_1) \wedge \phi(e_2)[/mm]
>
> [mm]= \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}[/mm]
>
> = [mm](2e_1 + e_2) \wedge (-e_1 + 2e_2 + e_3)[/mm]
> = [mm]2e_1 \wedge -e_1 + 2e_1 \wedge 2e_2 + 2e_1 \wedge e_3 + e_2 \wedge -e_1 + e_2 \wedge 2e_2 + e_2 \wedge e_3[/mm]
>
> = [mm]5e_1 \wedge e_2 + 2e_1 \wedge e_3 + e_2 \wedge e_3[/mm]
>
> also ist die erste Spalte: [mm]\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}[/mm]
>
> für die 2. und 3. Spalte erhalte ich analog:
> [mm]\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}[/mm] und
> [mm]\begin{pmatrix} -5 \\ -2 \\ -1 \end{pmatrix}[/mm]
>
> Also ist die Darstellungsmatrix: [mm]A := \begin{pmatrix} 5 && 5 && -5 \\ 2 && 2 && -2 \\ 1 && 1 && -1 \end{pmatrix}[/mm]
Ich habe das nicht überprüft, finde aber, dass es richtig aussieht.
>
> Aber wie berrechne ich nun Kern und Bild?
>
> Wäre ich wieder in einem normalen [mm]\mathbb{R} [/mm]-Vektorraum,
> dann wäre:
> [mm]\ker(A) = < \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} >[/mm]
>
> [mm]\Im(A) = <\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}>[/mm]
>
Du bist in einem "normalen" [mm] $\IR$-Vektorraum! [/mm] Die obigen Mengen müssen so interpretiert werden: zuerst kann man auch [mm] $\ker(A) [/mm] = < [mm] \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} [/mm] >= [mm] \IR\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}+ \IR\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ [/mm] schreiben, was es für mich einfacher macht. Der Vektor [mm] $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ [/mm] steht für [mm] $1\cdot(e_{1}\wedge e_{2})+0\cdot (e_{1}\wedge e_{3})+ 1\cdot (e_{2}\wedge e_{3})$. [/mm] Daher kann [mm] $\ker [/mm] A$ in der Standardbasis so geschrieben werden: [mm] $\ker(A) [/mm] = [mm] \IR\left(e_{1}\wedge e_{2}+e_{2}\wedge e_{3}\right)+ \IR\left(e_{1}\wedge e_{2} - e_{1}\wedge e_{3}\right)$. [/mm] Wenn gewünscht, kann man auch [mm] $\ker [/mm] A= [mm] \{(x_{1}+x_{2})e_{1}\wedge e_{2}-x_{2}e_{1}\wedge e_{3}+x_{1}e_{2}\wedge e_{3}|x_{1},x_{2}\in \IR\}$ [/mm] schreiben.
> Ist dann
> [mm]\ker(\wedge^2\phi) = <\begin{pmatrix} x_1 \wedge x_2 \\ 0 \\ x_1 \wedge x_2 \end{pmatrix}, \begin{pmatrix} -x_1 \wedge x_2 \\ x_1 \wedge x_2 \\ 0 \end{pmatrix}>[/mm]
> mit [mm]x_1,x_2 \in \mathbb{R}^3[/mm] ?
>
> MfG
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>
> http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=224124
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:02 Sa 26.11.2016 | Autor: | redhorse |
Danke dir!
MfG
|
|
|
|