www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 2.Ordnung
DGL 2.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 26.02.2008
Autor: Arvi-Aussm-Wald

ist mir ja fast schon peinlich aber ich muss noch mal ne frage zu den dgsl stellen...
ich hab die dgl
x''+2x'+2x=0
ist eine homogene dgl 2. ordnung, also wähle ich [mm] x^{\lambda*t} [/mm]
als ansatz.
2 mal abgeleitet und eingesetzt liefert die quadratische gleichung:
[mm] \lambda^2+2\lambda+2=0 [/mm]
problem ist jetzt das ich das nicht als [mm] c_{1}*e^{\lambda_{1}*t}+c_{2}*e^{\lambda_{2}*t} [/mm] schreiben kann, da das polynom keine nullstellen in [mm] \IR [/mm] hat.
habs auch komplex versucht aber führt zu nix und im ergebnis soll auch nix mit komplexen zahlen rauskommen.


so wo ich gerade dabei bin hab ich direkt noch mal ne frage ^^ (ist aber erstmal zweitrangig)

[mm] \limes_{x\rightarrow 0}\bruch{\wurzel{1+x^2}-\wurzel{1-x^2}}{x^2} [/mm]
ich kann es lösen indem ich 2 mal l'hospital anwende ist aber sehr aufwendig. vll sieht ja hier jemand wo und wie man das was ausklammern kann oder so

DANKE ;)

        
Bezug
DGL 2.Ordnung: zum Grenzwert
Status: (Antwort) fertig Status 
Datum: 21:25 Di 26.02.2008
Autor: Loddar

Hallo Arvi!


Erweitere den Bruch mal mit dem Term [mm] $\left( \ \wurzel{1+x^2} \ \red{+} \ \wurzel{1-x^2} \ \right)$ [/mm] und fasse zusammen bzw. kürze.


Gruß
Loddar


Bezug
        
Bezug
DGL 2.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Di 26.02.2008
Autor: MathePower

Hallo Arvi-Aussm-Wald,

> ist mir ja fast schon peinlich aber ich muss noch mal ne
> frage zu den dgsl stellen...
>  ich hab die dgl
>  x''+2x'+2x=0
>  ist eine homogene dgl 2. ordnung, also wähle ich
> [mm]x^{\lambda*t}[/mm]
>  als ansatz.
>  2 mal abgeleitet und eingesetzt liefert die quadratische
> gleichung:
>  [mm]\lambda^2+2\lambda+2=0[/mm]


>  problem ist jetzt das ich das nicht als
> [mm]c_{1}*e^{\lambda_{1}*t}+c_{2}*e^{\lambda_{2}*t}[/mm] schreiben
> kann, da das polynom keine nullstellen in [mm]\IR[/mm] hat.
>  habs auch komplex versucht aber führt zu nix und im
> ergebnis soll auch nix mit komplexen zahlen rauskommen.
>  

Hat die charakterische Gleichung einer DGL 2. Ordnung konjugiert komplexe Lösungen [mm]\lambda_{1,2}=a\pm b i[/mm], so lautet die homogene Lösung der DGL:

[mm]y_{h}\left(t\right)=c_{1}*e^{a*t}*\sin\left(b*t\right)+c_{2}*e^{a*t}*\cos\left(b*t\right)[/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de