www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Binomischer Lehrsatz
Binomischer Lehrsatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Lehrsatz: Unklarheit, konkretes Beispiel
Status: (Frage) beantwortet Status 
Datum: 11:29 Do 22.07.2010
Autor: neuling_hier

Aufgabe
Binomischer Lehrsatz: Es gilt für [mm] $p\in[0,1]$ [/mm] und [mm] $n\in\IN$: [/mm]

[mm] $\sum_{\omega=0}^n \vektor{n \\ \omega}p^\omega\cdot(1-p)^{n-\omega} [/mm] = 1$

Man zeige mir bitte, warum mein konkretes Beispiel (siehe unten) nicht funktioniert ... :-)

Hallo liebes Forum,

ich wollte mir ein konkretes Beispiel zum Binomischen Lehrsatz konstruieren, aber hänge irgendwie fest. Ich setze also als Beispiel:

  $n := 4$
  $p := [mm] \frac{1}{4}$ [/mm]
  $q := 1-p = [mm] \frac{3}{4}$. [/mm]

Nun rechne ich zunächst die (Sub-)Terme [mm] $p^\omega\cdot q^{n-\omega}$ [/mm] gemäß obigem Lehrsatz aus:

  [mm] $\omega [/mm] = 0$: [mm] $1\cdot(\frac{3}{4})^4 [/mm] = [mm] \frac{3^4}{4^4} [/mm] = [mm] \frac{81}{256}$ [/mm]

  [mm] $\omega [/mm] = 1$: [mm] $\frac{1}{2}\cdot(\frac{3}{4})^3 [/mm] = [mm] \frac{1}{2}\cdot\frac{27}{64} [/mm] = [mm] \frac{27}{128}$ [/mm]

  [mm] $\omega [/mm] = 2$: [mm] $(\frac{1}{2})^2\cdot(\frac{3}{4})^2 [/mm] = [mm] \frac{1}{4}\cdot\frac{9}{16} [/mm] = [mm] \frac{9}{64}$ [/mm]

  [mm] $\omega [/mm] = 3$: [mm] $(\frac{1}{2})^3\cdot(\frac{3}{4})^1 [/mm] = [mm] \frac{1}{8}\cdot\frac{3}{4} [/mm] = [mm] \frac{3}{32}$ [/mm]

  [mm] $\omega [/mm] = 4$: [mm] $(\frac{1}{2})^4\cdot [/mm] 1 = [mm] \frac{1}{16}$ [/mm]

Ich erhalte also folgende Faktoren (auf gleichen Nenner gebracht):

  [mm] $\frac{81}{256}$, $\frac{54}{256}$, $\frac{36}{256}$, $\frac{24}{256}$, $\frac{16}{256}$. [/mm]

Mit den Koeffizienten 1,4,6,4,1 (die man z.B. mittels Pascalsches Dreieck erhält) sollte doch nun nach dem BL gelten:

  [mm] $1\cdot\frac{81}{256} [/mm] + [mm] 4\cdot\frac{54}{256} [/mm] + [mm] 6\cdot\frac{36}{256} [/mm] + [mm] 4\cdot\frac{24}{256} [/mm] + [mm] 1\cdot\frac{16}{256} [/mm] =^! 1$.

Das tut es aber offensichtlich nicht?! Kann mir jemand sagen, wo mein Denk-, Verständnis- oder Rechenfehler ist?

Vielen lieben Dank im Voraus!! :-)

        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 22.07.2010
Autor: fred97


> Binomischer Lehrsatz: Es gilt für [mm]p\in[0,1][/mm] und [mm]n\in\IN[/mm]:
>  
> [mm]\sum_{\omega=0}^n \vektor{n \\ \omega}p^\omega\cdot(1-p)^{n-\omega} = 1[/mm]
>  
> Man zeige mir bitte, warum mein konkretes Beispiel (siehe
> unten) nicht funktioniert ... :-)
>  Hallo liebes Forum,
>  
> ich wollte mir ein konkretes Beispiel zum Binomischen
> Lehrsatz konstruieren, aber hänge irgendwie fest. Ich
> setze also als Beispiel:
>  
> [mm]n := 4[/mm]
>    [mm]p := \frac{1}{4}[/mm]
>    [mm]q := 1-p = \frac{3}{4}[/mm].
>  
> Nun rechne ich zunächst die (Sub-)Terme [mm]p^\omega\cdot q^{n-\omega}[/mm]
> gemäß obigem Lehrsatz aus:
>  
> [mm]\omega = 0[/mm]: [mm]1\cdot(\frac{3}{4})^4 = \frac{3^4}{4^4} = \frac{81}{256}[/mm]
>  
> [mm]\omega = 1[/mm]: [mm]\frac{1}{2}\cdot(\frac{3}{4})^3 = \frac{1}{2}\cdot\frac{27}{64} = \frac{27}{128}[/mm]
>  
> [mm]\omega = 2[/mm]: [mm](\frac{1}{2})^2\cdot(\frac{3}{4})^2 = \frac{1}{4}\cdot\frac{9}{16} = \frac{9}{64}[/mm]
>  
> [mm]\omega = 3[/mm]: [mm](\frac{1}{2})^3\cdot(\frac{3}{4})^1 = \frac{1}{8}\cdot\frac{3}{4} = \frac{3}{32}[/mm]
>  
> [mm]\omega = 4[/mm]: [mm](\frac{1}{2})^4\cdot 1 = \frac{1}{16}[/mm]
>  
> Ich erhalte also folgende Faktoren (auf gleichen Nenner
> gebracht):
>  
> [mm]\frac{81}{256}[/mm], [mm]\frac{54}{256}[/mm], [mm]\frac{36}{256}[/mm],
> [mm]\frac{24}{256}[/mm], [mm]\frac{16}{256}[/mm].
>  
> Mit den Koeffizienten 1,4,6,4,1 (die man z.B. mittels
> Pascalsches Dreieck erhält) sollte doch nun nach dem BL
> gelten:
>  
> [mm]1\cdot\frac{81}{256} + 4\cdot\frac{54}{256} + 6\cdot\frac{36}{256} + 4\cdot\frac{24}{256} + 1\cdot\frac{16}{256} =^! 1[/mm].
>  
> Das tut es aber offensichtlich nicht?! Kann mir jemand
> sagen, wo mein Denk-, Verständnis- oder Rechenfehler ist?



Du rechnest hier


[mm]\omega = 1[/mm]: [mm]\frac{1}{2}\cdot(\frac{3}{4})^3 = \frac{1}{2}\cdot\frac{27}{64} = \frac{27}{128}[/mm]

>  
> [mm]\omega = 2[/mm]: [mm](\frac{1}{2})^2\cdot(\frac{3}{4})^2 = \frac{1}{4}\cdot\frac{9}{16} = \frac{9}{64}[/mm]
>  
> [mm]\omega = 3[/mm]: [mm](\frac{1}{2})^3\cdot(\frac{3}{4})^1 = \frac{1}{8}\cdot\frac{3}{4} = \frac{3}{32}[/mm]
>  
> [mm]\omega = 4[/mm]: [mm](\frac{1}{2})^4\cdot 1 = \frac{1}{16}[/mm]


immer mit $ p = [mm] \frac{1}{2} [/mm] $ statt mit $ p = [mm] \frac{1}{4} [/mm] $


FRED

>  
> Vielen lieben Dank im Voraus!! :-)


Bezug
                
Bezug
Binomischer Lehrsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:40 Do 22.07.2010
Autor: neuling_hier

Oh mann ... jetzt sehe ich das auch - Dass mir das nichtmal beim Eintippen aufgefallen ist :/

Ich danke Dir vielmals! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de