www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bestimme Anzahl Kugeln i Urne
Bestimme Anzahl Kugeln i Urne < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Fr 05.11.2021
Autor: hase-hh

Aufgabe
In einer Urne liegen schwarze und weiße Kugeln und zwar doppelt so viele
schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei schwarze und eine weiße Kugel erhält, ist  P [mm] \ge [/mm] ½ .

Weisen Sie nach, dass in der Urne höchstens 12 Kugeln sind.

Moin Moin,

ich kann diese Aufgabe natürlich durch Probieren lösen. Aber mich interessiert in erster Linie, ob man das Problem auch allgemein lösen kann?


Lösen durch Probieren

Es handelt sich um ein Ziehen auf einen Griff bzw. ein Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle spielt.

Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll, kommen für die Gesamtzahl der Kugeln in der Urne nur durch drei teilbare Zahlen infrage.

P(X=2) = [mm] \bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}} [/mm]


1) N = 12  =>  M = 8,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 50,9 %


2) N =  9  =>  M = 6,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 53,6 %


3) N =  6  =>  M = 4,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}} [/mm]

P(X=2) = 60 %



4) N =  3  =>  M = 2,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}} [/mm]

P(X=2) = 100 %


5) N = 15  =>  M = 10,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 49,5 %


D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen, nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer weiter ab.


Allgemeine Lösung

Wie gesagt, gibt es vielleicht auch eine allgemeine Lösung?

Idee:

N = 3*z  M = 2*z  n = 3  k = 2

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]


Aber kann man das weiter umformen, d.h. deutlich vereinfachen?


Danke & Gruß!




















        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Sa 06.11.2021
Autor: statler


> In einer Urne liegen schwarze und weiße Kugeln und zwar
> doppelt so viele
> schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass
> man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei
> schwarze und eine weiße Kugel erhält, ist  P [mm]\ge[/mm] ½ .
>  
> Weisen Sie nach, dass in der Urne höchstens 12 Kugeln
> sind.

Guten Morgen!

> ich kann diese Aufgabe natürlich durch Probieren lösen.
> Aber mich interessiert in erster Linie, ob man das Problem
> auch allgemein lösen kann?
>  
>
> Lösen durch Probieren
>  
> Es handelt sich um ein Ziehen auf einen Griff bzw. ein
> Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle
> spielt.
>
> Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen
> schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit
> N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von
> schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll,
> kommen für die Gesamtzahl der Kugeln in der Urne nur durch
> drei teilbare Zahlen infrage.
>
> P(X=2) = [mm]\bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}}[/mm]
>  
>
> 1) N = 12  =>  M = 8,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 50,9 %
>  
>
> 2) N =  9  =>  M = 6,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 53,6 %
>  
>
> 3) N =  6  =>  M = 4,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}}[/mm]
>  
> P(X=2) = 60 %
>  
>
>
> 4) N =  3  =>  M = 2,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}}[/mm]
>  
> P(X=2) = 100 %
>  
>
> 5) N = 15  =>  M = 10,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 49,5 %
>  
>
> D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von
> drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen,
> nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer
> weiter ab.

Das ist jetzt zwar zu vermuten, aber keinesfalls stringent bewiesen.

>
> Allgemeine Lösung
>
> Wie gesagt, gibt es vielleicht auch eine allgemeine
> Lösung?
>  
> Idee:

Gute Idee!

>
> N = 3*z  M = 2*z  n = 3  k = 2
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
>
> Aber kann man das weiter umformen, d.h. deutlich
> vereinfachen?

Ja, kann man.

[mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Das ergibt für z = 5 den Wert [mm] $\frac{90}{192}$. [/mm] Außerdem ist der Grenzwert offenbar [mm] $\frac{4}{9}$. [/mm] Man muß also noch zeigen, daß die Folge für $z [mm] \ge [/mm] 5$ monoton fallend ist.
Das überlasse ich erstmal dir.

Gruß Dieter


Bezug
                
Bezug
Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 So 07.11.2021
Autor: hase-hh

...
> > Allgemeine Lösung
> >
> > N = 3*z  M = 2*z  n = 3  k = 2


> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> >  

> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]

> > Aber kann man das weiter umformen, d.h. deutlich
> > vereinfachen?
>  
> Ja, kann man.
>
> [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Also, da [mm] \vektor{n \\ k} [/mm] = [mm] \bruch{n!}{(n-k)!*k!} [/mm] folgt:

[mm] \vektor{2z \\ 2} [/mm] = [mm] \bruch{(2z)!}{(2z-2)!*2!} [/mm] = [mm] \bruch{2z*(2z-1)*(2z-2)!}{(2z-2)!*2*1} [/mm] = [mm] \bruch{2z*(2z-1)}{2} [/mm]

[mm] \vektor{3z \\ 3} [/mm] = [mm] \bruch{(3z)!}{(3z-3)!*3!} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)*(3z-3)!}{(3z-3)!*3*2*1} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)}{6} [/mm]

Eingesetzt in die Formel

[mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]


> Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.

wenn ich jetzt umforme

[mm] \bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2} [/mm]   | *2 *(3z-1)*(3z-2)

(2z-1)*2*z*2 [mm] \ge [/mm]  (3z-1)*(3z-2)
  
[mm] 8z^2-4z \ge 9z^2 [/mm] -9z +2

[mm] -z^2 [/mm] +5z -2 [mm] \ge [/mm] 0

Die Nullstellen begrenzen hier das Intervall, in dem die Funktionswerte von [mm] -z^2 [/mm] +5z -2 < 0 sind, d.h. das Intervall, in dem die Ungleichung gilt.

[mm] z_1 \approx [/mm] 4,56

[mm] z_2 \approx [/mm] 0,44  

Also müsste z [mm] \ge [/mm] 0,44 oder z [mm] \le [/mm] 4,56 sein bzw.  =>  z [mm] \in [/mm] [1;4] .




>  


Bezug
                        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 So 07.11.2021
Autor: statler

Moinsen!
>  
> Eingesetzt in die Formel
>
> [mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]
>  
>
> > Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> > ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> > zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.
>  
> wenn ich jetzt umforme
>
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]   |
> *2 *(3z-1)*(3z-2)

Jetzt wird es tückisch! Bei Ungleichungen muß man aufpassen, daß sich die Richtung umkehrt, wenn man mit Werten < 0 multipliziert. Gegebenenfalls muß man dazu Fälle unterscheiden. Hier ist es besser, statt der Ungleichung die zugehörige Gleichung zu untersuchen.

> (2z-1)*2*z*2 [mm]\ge[/mm]  (3z-1)*(3z-2)
>    
> [mm]8z^2-4z \ge 9z^2[/mm] -9z +2
>
> [mm]-z^2[/mm] +5z -2 [mm]\ge[/mm] 0
>
> Die Nullstellen begrenzen hier das Intervall, in dem die
> Funktionswerte von [mm]-z^2[/mm] +5z -2 < 0 sind, d.h. das
> Intervall, in dem die Ungleichnung gilt.

Die Funktion [mm]f(z) = -z^2[/mm] +5z -2 ist eine nach unten geöffnete Parabel, ....

>
> [mm]z_1 \approx[/mm] 4,56
>
> [mm]z_2 \approx[/mm] 0,44  
>
> Also müsste z > 0,44 oder z < 4,56 sein.
>
> =>  z [mm]\in[/mm] [1;4] sein.

... also ist der Funktionswert für z [mm]\in[/mm] [1;4] > 0.

Wie sieht das jetzt bei dem Term [mm] $\frac{{(2z-1)}*2*z}{(3z-1)*(3z-2)} [/mm] =: g(z)$ aus, der uns eigentlich interessiert?

Wir kennen die Stellen, wo $ g(z) = [mm] \frac{1}{2}$ [/mm] ist. Für z [mm]\in[/mm] [1;4] ist g(z) stetig, also reicht es, z = 2 einzusetzen: $g(2) = [mm] \frac{3}{5} [/mm] > [mm] \frac{1}{2}$. [/mm] Also ist g(z) im gesamten Intervall $> [mm] \frac{1}{2}$, [/mm] also ist $z [mm] \ge [/mm] 5$ die Lösung.

Den Beweis der Monotonie haben wir auf diesem Wege vermieden.

Gruß Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de