www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Berechnung lokal. Extrema
Berechnung lokal. Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung lokal. Extrema: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 04:58 Fr 23.03.2018
Autor: mka

Aufgabe
Untersuchen Sie, ob die Funktion f:R2−→R definiert durch
$ [mm] f(x,y)=-x^2-y^2+xy^2-5x-6y+42 [/mm] $
lokale Extrema besitzt und geben Sie diese gegebenenfalls an. Besitzt f ein globales Extremum?

Hallo,

ich versuche gerade diese Aufgabe zu berechnen, nur leider komme ich bei der Berechnung der Nullstellen nicht weiter.

Was ich bisher gerechnet habe:
1. $ [mm] fx(x,y)=-2x+y^2-5 [/mm] $
2. $ fy(x,y)= -2y+2xy-6 $

$ H(f)(x,y)= [mm] \pmat{ -2 & 2y \\ 2y & 2x-2 } [/mm] $
$ det = [mm] -2(-2+2x)-(2y)^2=4-4x-4y^2 [/mm] $

$ J(f)(x,y)=(0,0)$

Hier habe ich die 2. Funktion genommen und erstmal umgeformt.
Was mich aber verwirrt ist die -6. Bisher hatte ich das immer ohne zusätzliche Konstanten gerechnet.
$ -2y+2xy-6=0 $
$  y(-1+x)-6=0 $

Hier hätte ich nun durch hinschauen einfach gesagt, dass die Nullstellen y=1 und x=7 ist.
Ist das so machbar? Ich bin mir unsicher, weil auch y=6 und x=2 zu einer Null führen würde.

Danke für die Hilfe.


        
Bezug
Berechnung lokal. Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 06:25 Fr 23.03.2018
Autor: fred97

Wir haben also die Gleichungen


(1) $ [mm] 0=-2x+y^2-5 [/mm] $

(2) $ 0= -2y+2xy-6 $

Wir multiplizieen (1) mit y und bekommen

(3) [mm] 0=-2xy+y^3-5y$ [/mm]

Löst man (2) nach 2xy auf und setzt das in (3) ein, so ergibt sich

(4)  [mm] y^3-7y-6=0. [/mm]

Eine Lösung der letzten Gleichung kann man erraten: y=-1. Durch Polynomdivision erhält man nun die weiteren Lösungen von (4): y=-2 und y=3.

Mit Gleichung (1) ergeben sich nun drei stationäre Punkte von f.

Bezug
                
Bezug
Berechnung lokal. Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Sa 24.03.2018
Autor: mka

Danke sehr.
Ich habe folgende Nullstellen rausbekommen: $(-2,-1), [mm] (-\bruch{1}{2},-2), [/mm] (2,3)$
(-2,-1) ist ein lokales Maximum und die anderen beiden keine lokalen Extrema.

Ich habe nun auch den Teil mit den globalen Extrema ausgerechnet, aber ich bin mir nicht sicher, ob das so richtig ist:

$ [mm] f(1,y)=-1-1+y^2-5-6y+42\to \infty [/mm] $ Kein globales Maximum (Unter dem Pfeil soll  [mm] $y\to-\infty$ [/mm] stehen).

[mm] $f(-1,y)=-1-1-y^2+5-6y+42\to -\infty$ [/mm] Kein globales Minimum (Und hier [mm] $y\to\infty$) [/mm]

Bezug
                        
Bezug
Berechnung lokal. Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Sa 24.03.2018
Autor: fred97


> Danke sehr.
>  Ich habe folgende Nullstellen rausbekommen: [mm](-2,-1), (-\bruch{1}{2},-2), (2,3)[/mm]
>  
> (-2,-1) ist ein lokales Maximum und die anderen beiden
> keine lokalen Extrema.
>  
> Ich habe nun auch den Teil mit den globalen Extrema
> ausgerechnet, aber ich bin mir nicht sicher, ob das so
> richtig ist:
>  
> [mm]f(1,y)=-1-1+y^2-5-6y+42\to \infty[/mm] Kein globales Maximum
> (Unter dem Pfeil soll  [mm]y\to-\infty[/mm] stehen).
>  
> [mm]f(-1,y)=-1-1-y^2+5-6y+42\to -\infty[/mm] Kein globales Minimum
> (Und hier [mm]y\to\infty[/mm])


Alles  bestens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de