www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Abhängigkeit und Mächtigkeit
Status: (Frage) beantwortet Status 
Datum: 13:08 Sa 29.07.2023
Autor: b.reis

Aufgabe
Elementarereignisse:

P(A) = [mm] \bruch{1}{3} [/mm]

P(B) = [mm] \bruch{1}{3} [/mm]

P(C) = [mm] \bruch{1}{3} [/mm]

OMEGA = {A,B,C}

Es gelten also La Place Regeln.
Ich könnte auch sagen es ist ein Würfel mit 3 Augen.

Weiter ist eine Liste beliebiger länge gegeben [A,B,C,A,C,C,A,B,B,A,A.....]

Also die Länge spielt nicht wirklich eine Rolle.
Was wichtig ist, ist die Frage nach der Wahrscheinlichkeit des Auftretens von A,B oder C in dieser liste.

Bei eins angefangen [A,.,.,.,......] beträgt die Wahrscheinlichkeit für

P(A) = [mm] \bruch{1}{3} [/mm]

So da ich jetzt das erste Ereignis kenne kann ich mich Fragen

was ist P(B|A)

also wie wahrscheinlich ist es, dass B als zweites Element in der Liste [A,B,......]  erscheint, unter der Bedingung dass, das erste Element A ist

P(B|A)

Ist das überhaupt möglich oder sind die Mengen

{A},{B},{C} Disjunkt ?

Aber dann denke ich dass die Länge der Liste doch eine Rolle spielt und die Menge {[A,B,....]} = X = {A,B} , Reihenfolge egal.

Dann Müsste die Menge Y ={A,(B,C)} also die bekannte Menge sein

und dann sieht die Formel der Bedingten Wahrscheinlichkeit für das auftreten von X unter der Bedingung Y so aus.

Gegeben:

X={A,B}

Y={A,B,C}

[mm] P(X|Y)=\bruch{P(X \cap Y)}{P(Y)} [/mm]

P(X [mm] \cap [/mm]  Y)= {A,B} [mm] =2*\bruch{1}{3}=\bruch{2}{3} [/mm]

P(Y) = 1

[mm] =\bruch{\bruch{2}{3}}{1} =\bruch{2}{3} [/mm]

Aber irgendwie drehe ich mich hier im Kreis,

denn eigentlich ist die Wahrscheinlichkeit für jedes Ereignis [mm] \bruch{1}{3} [/mm]
aber die Wahrscheinlichkeit von B muss doch steigen wenn A oder C bereits gewürfelt wurden.

Danke



        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 29.07.2023
Autor: statler

Hi!

> Elementarereignisse:
>  
> P(A) = [mm]\bruch{1}{3}[/mm]
>  
> P(B) = [mm]\bruch{1}{3}[/mm]
>  
> P(C) = [mm]\bruch{1}{3}[/mm]
>  
> OMEGA = {A,B,C}
>  
> Es gelten also La Place Regeln.
>  Ich könnte auch sagen es ist ein Würfel mit 3 Augen.

Gemeint ist wohl: mit 3 Seiten. Oder besser: ein normaler Würfel mit 2 Einsen, 2 Zweien und 2 Dreien.

>  
> Weiter ist eine Liste beliebiger länge gegeben
> [A,B,C,A,C,C,A,B,B,A,A.....]
>  
> Also die Länge spielt nicht wirklich eine Rolle.
>  Was wichtig ist, ist die Frage nach der Wahrscheinlichkeit
> des Auftretens von A,B oder C in dieser liste.
>  
> Bei eins angefangen [A,.,.,.,......] beträgt die
> Wahrscheinlichkeit für
>  
> P(A) = [mm]\bruch{1}{3}[/mm]
>  
> So da ich jetzt das erste Ereignis kenne kann ich mich
> Fragen
>
> was ist P(B|A)
>
> also wie wahrscheinlich ist es, dass B als zweites Element
> in der Liste [A,B,......]  erscheint, unter der Bedingung
> dass, das erste Element A ist
>
> P(B|A)
>  Ist das überhaupt möglich oder sind die Mengen
>
> {A},{B},{C} Disjunkt ?

Das sieht man doch hoffentlich: ja!

>
> Aber dann denke ich dass die Länge der Liste doch eine
> Rolle spielt und die Menge {[A,B,....]} = X = {A,B} ,
> Reihenfolge egal.
>  
> Dann Müsste die Menge Y ={A,(B,C)} also die bekannte Menge
> sein
>  
> und dann sieht die Formel der Bedingten Wahrscheinlichkeit
> für das auftreten von X unter der Bedingung Y so aus.
>  
> Gegeben:
>  
> X={A,B}
>  
> Y={A,B,C}
>  
> [mm]P(X|Y)=\bruch{P(X \cap Y)}{P(Y)}[/mm]
>  
> P(X [mm]\cap[/mm]  Y)= {A,B} [mm]=2*\bruch{1}{3}=\bruch{2}{3}[/mm]
>  
> P(Y) = 1
>  
> [mm]=\bruch{\bruch{2}{3}}{1} =\bruch{2}{3}[/mm]

Nee, so wird das nix. Du könntest X = {(*,B)} und Y = {(A,*)} nehmen. Das zugehörige Modell ist hier 'Ziehen mit Zurücklegen'. Der Würfel (bzw. die Urne) hat kein Gedächtnis. Wenn das anders wäre, käme man in die Welt der Markow-Prozesse.

>  
> Aber irgendwie drehe ich mich hier im Kreis,
>
> denn eigentlich ist die Wahrscheinlichkeit für jedes
> Ereignis [mm]\bruch{1}{3}[/mm]
>  aber die Wahrscheinlichkeit von B muss doch steigen wenn A
> oder C bereits gewürfelt wurden.

Das ist der bekannte Roulette-Irrtum: Wenn 10mal hintereinander 'Rot' gefallen ist, ist im 11. Versuch die Wahrscheinlichkeit für 'Schwarz' immer noch 1/2.

Gruß Dieter


Bezug
        
Bezug
Bedingte Wahrscheinlichkeit: passenden W'keitsraum wählen !
Status: (Antwort) fertig Status 
Datum: 11:29 So 30.07.2023
Autor: Al-Chwarizmi

Gemäß deiner Beschreibung sind A,B und C die (je gleichwahrscheinlichen) Ausgänge einer einzelnen Ausführung des Zufallsexperiments.
Der Wahrscheinlichkeitsraum Omega beschreibt also nur diesen simplen "Laplace-Raum".
Wenn du dann aber Serien beliebiger Länge von Einzelausführungen dieses Versuches betrachten willst, brauchst du auch entsprechend ausgewählte Wahrscheinlichkeitsräume, deren Elemente eben Sequenzen (der gewählten Länge) wie etwa  <A,C,B,B,C>  etc. sein können.

LG ,    Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de