www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis aus Eigenvek. von End(V)
Basis aus Eigenvek. von End(V) < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis aus Eigenvek. von End(V): Idee
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 15.05.2013
Autor: woohoo

Aufgabe
Zeigen Sie: Ist K ein Koerper und V ein endlichdimensionaler K-Vektorraum, M [mm] \subseteq [/mm] End(V) eine kommutative Unteralgebra, so dass alle Elemente von M diagonalisierbar sind, so besitzt V eine Basis aus simultanen Eigenvektoren der Elemente von M.

Hallo,

Leider weiss ich nicht so genau was man hier fuer einen Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis aus simultanen Eigenvektoren der Elemente von M" gemeint ist.

Soll man eine Basis fuer V finden, die aus Eigenvektoren [mm] v_i [/mm] besteht wobei diese [mm] v_i [/mm] Eigenwerte von ALLEN elementen in End(V) sind? Das ergibt fuer mich irgendwie keinen Sinn.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Basis aus Eigenvek. von End(V): Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 15.05.2013
Autor: fred97


> Zeigen Sie: Ist K ein Koerper und V ein
> endlichdimensionaler K-Vektorraum, M [mm]\subseteq[/mm] End(V) eine
> kommutative Unteralgebra, so dass alle Elemente von M
> diagonalisierbar sind, so besitzt V eine Basis aus
> simultanen Eigenvektoren der Elemente von M.
>  Hallo,
>
> Leider weiss ich nicht so genau was man hier fuer einen
> Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis
> aus simultanen Eigenvektoren der Elemente von M" gemeint
> ist.
>  
> Soll man eine Basis fuer V finden, die aus Eigenvektoren
> [mm]v_i[/mm] besteht wobei diese [mm]v_i[/mm] Eigenwerte von ALLEN elementen
> in End(V) sind? Das ergibt fuer mich irgendwie keinen
> Sinn.

Dieser Satz hat auch keinerlei Sinn !

Sei dim(V)=n. Du sollst zeigen: es gibt eine Basis [mm] b_1,...,b_n [/mm] von V mit der Eigenschaft:

      ist [mm] \phi \in [/mm] M, so sind alle [mm] b_1,...,b_n [/mm] Eigenvektoren von [mm] \phi. [/mm]

FRED


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Basis aus Eigenvek. von End(V): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:05 Do 16.05.2013
Autor: woohoo

Ok,

Da fuer f [mm] \in [/mm] M gilt, dass f diagonalisierbar ist, bilden die Eigenvektoren einen Basis von V. Wie genau kann ich jetzt zeigen, dass ein anderes g [mm] \in [/mm] M die selben Eigenvektoren hat (das ist doch was ich zeigen muss glaube ich)?

Bezug
                        
Bezug
Basis aus Eigenvek. von End(V): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 19.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de