www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basen, Koordinatenwechsel
Basen, Koordinatenwechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen, Koordinatenwechsel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 06.07.2015
Autor: rsprsp

Aufgabe
In [mm] \IR^{2} [/mm] seien folgende zwei Basen definiert: Die alte Basis sei B = {(1, 3),(3, −1)}, die neue Basis sei die kanonische Basis E = {(1, 0),(0, 1)}.

a) Geben Sie die Matrix S für den Koordinatenwechsel von B zu E und die Matrix [mm] S^{-1} [/mm] für den Koordinatenwechsel von E zu B an.

b) Geben Sie mit Hilfe von S und [mm] S^{-1} [/mm] die Matrix AL in der Basis B und die Matrix [mm] A_{L}˜ [/mm] in der Basis E der linearen Abbildung L : [mm] \IR^{2} [/mm] → [mm] \IR^{2} [/mm] an, die definiert ist als die Spiegelung an der Geraden x2 = 3x1.

(Denken Sie daran, wenn Sie die allgemeine Spiegelungsmatrix für beliebige Geraden nutzen, müssen
Sie diese auch beweisen!)

a)
Ich schreibe die Basis B in der Matrixform:
[mm] \pmat{ 1 & 3 \\ 3 & -1 } [/mm]

Ich erhalte also für
S = [mm] \pmat{ 1 & 3 \\ 3 & -1 } [/mm]
[mm] S^{-1} [/mm] = [mm] \pmat{ 0,1 & 0,3 \\ 0,3 & -0,1 } [/mm]


b) Die Gerade y=3x geht durch (0;0) und hat Steigung von 3.
Bei der Spiegelung bleibt (1;3) erhalten und aus
(3;-1) wird (-3 ; 1 ) , also das negative davon.

Aus dem Vektor, der bezüglich Basis B die Koordinaten a;b hat, wird
also  ( a ; -b). Damit ist die Matrix bzgl. B
[mm] A_{L} \pmat{ 1 & 0 \\ 0 & -1 } [/mm]

und [mm] A_{L}˜ [/mm] wäre dann
S * [mm] A_{L} [/mm] * [mm] S^{-1} [/mm] =
[mm] \pmat{ -0,8 & 0,6 \\ 0,6 & 0,8 } [/mm]

Ist meine Vorgehensweise richtig?

        
Bezug
Basen, Koordinatenwechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Di 07.07.2015
Autor: angela.h.b.


> In [mm]\IR^{2}[/mm] seien folgende zwei Basen definiert: Die alte
> Basis sei B = {(1, 3),(3, −1)}, die neue Basis sei die
> kanonische Basis E = {(1, 0),(0, 1)}.
>  
> a) Geben Sie die Matrix S für den Koordinatenwechsel von B
> zu E und die Matrix [mm]S^{-1}[/mm] für den Koordinatenwechsel von
> E zu B an.
>  
> b) Geben Sie mit Hilfe von S und [mm]S^{-1}[/mm] die Matrix AL in
> der Basis B und die Matrix [mm]A_{L}˜[/mm] in der Basis E der
> linearen Abbildung L : [mm]\IR^{2}[/mm] → [mm]\IR^{2}[/mm] an, die
> definiert ist als die Spiegelung an der Geraden x2 = 3x1.
>  
> (Denken Sie daran, wenn Sie die allgemeine
> Spiegelungsmatrix für beliebige Geraden nutzen, müssen
>  Sie diese auch beweisen!)
>  a)
>  Ich schreibe die Basis B in der Matrixform:
>  [mm]\pmat{ 1 & 3 \\ 3 & -1 }[/mm]
>  
> Ich erhalte also für
> S = [mm]\pmat{ 1 & 3 \\ 3 & -1 }[/mm]
>  [mm]S^{-1}[/mm] = [mm]\pmat{ 0,1 & 0,3 \\ 0,3 & -0,1 }[/mm]
>  
>
> b) Die Gerade y=3x geht durch (0;0) und hat Steigung von
> 3.
>  Bei der Spiegelung bleibt (1;3) erhalten und aus
> (3;-1) wird (-3 ; 1 ) , also das negative davon.
>  
> Aus dem Vektor, der bezüglich Basis B die Koordinaten a;b
> hat, wird
>  also  ( a ; -b). Damit ist die Matrix bzgl. B
>  [mm]A_{L} \pmat{ 1 & 0 \\ 0 & -1 }[/mm]
>  
> und [mm]A_{L}˜[/mm] wäre dann
>  S * [mm]A_{L}[/mm] * [mm]S^{-1}[/mm] =
> [mm]\pmat{ -0,8 & 0,6 \\ 0,6 & 0,8 }[/mm]
>  
> Ist meine Vorgehensweise richtig?

Hallo,

ja.
(Das Produkt am Ende habe ich nicht nachgerechnet.)

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de