www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Aufstellen Kostenfunktion
Aufstellen Kostenfunktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellen Kostenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 28.04.2016
Autor: rubi

Aufgabe
Die Gesamtkosten K einer Produktion lassen sich durch eine
ganzrationale Funktion 3.Grades darstellen. Dabei entspricht x der Produktionsmenge in Mengeneinheiten (ME) und K(x) den Gesamtkosten in Geldeinheiten (GE).

Im Jahr 2014 betrug der konstante Verkaufspreis je ME 22 GE. Bei diesem Verkaufspreis lag die Nutzenschwelle bei 5 ME. Der Fixkostenanteil an den Gesamtkosten betrug 10 GE.
Die variablen Stückkosten bei 4 ME betrugen 12 GE. Die Grenzkosten bei 4 ME betrugen 36 GE pro ME.
Bestimmen Sie die Erlösfunktion E sowie die Gesamtkostenfunktion K* für das Jahr 2014.

Hallo zusammen,

ich habe die Aufgabe so gelöst:
Es gilt:
Erlösfunktion E(x) = 22*x
K(x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx +d
Außerdem gilt K'(x) = [mm] 3ax^2 [/mm] + 2bx + c
und [mm] k_{V (x)} [/mm] = [mm] \bruch{ax^3+bx^2+cx}{x} [/mm] = [mm] ax^2+bx+c [/mm]

Bedingungen:
K(0) = 10 (wegen Fixkosten)
K(5) = E(5) = 110 (wegen bekannter Nutzenschwelle)
[mm] k_{V}(4) [/mm] = 12
K'(4) = 36

Ich erhalte aus den 4 Bedingungen die eindeutige Lösung
K(x) = [mm] 2x^3-10x^2+20x+10 [/mm]

Nun ist es allerdings so, dass diese Kostenfunktion gemeinsam mit der Erlösfunktion Schnittstellen bei x = 1 und x = 5 besitzt.
x = 5 wäre also eine Nutzengrenze und nicht wie im Aufgabentext vermerkt eine Nutzenschwelle.

Da ich für K(x) jedoch eine eindeutige Lösung erhalte, weiß ich nicht, wie ich K(x) so korrigieren könnte, dass x = 5 zur Nutzenschwelle wird.
Ist diese Aufgabe überhaupt so lösbar ?

Vielen Dank für eure Antworten.

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.





        
Bezug
Aufstellen Kostenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 28.04.2016
Autor: angela.h.b.


> Die Gesamtkosten K einer Produktion lassen sich durch eine
>  ganzrationale Funktion 3.Grades darstellen. Dabei
> entspricht x der Produktionsmenge in Mengeneinheiten (ME)
> und K(x) den Gesamtkosten in Geldeinheiten (GE).
>
> Im Jahr 2014 betrug der konstante Verkaufspreis je ME 22
> GE. Bei diesem Verkaufspreis lag die Nutzenschwelle bei 5
> ME. Der Fixkostenanteil an den Gesamtkosten betrug 10 GE.
>  Die variablen Stückkosten bei 4 ME betrugen 12 GE. Die
> Grenzkosten bei 4 ME betrugen 36 GE pro ME.
>  Bestimmen Sie die Erlösfunktion E sowie die
> Gesamtkostenfunktion K* für das Jahr 2014.
>  Hallo zusammen,
>
> ich habe die Aufgabe so gelöst:
> Es gilt:
> Erlösfunktion E(x) = 22*x
>  K(x) = [mm]ax^3[/mm] + [mm]bx^2[/mm] + cx +d
>  Außerdem gilt K'(x) = [mm]3ax^2[/mm] + 2bx + c
>  und [mm]k_{V (x)}[/mm] = [mm]\bruch{ax^3+bx^2+cx}{x}[/mm] = [mm]ax^2+bx+c[/mm]
>  
> Bedingungen:
> K(0) = 10 (wegen Fixkosten)
>  K(5) = E(5) = 110 (wegen bekannter Nutzenschwelle)
>  [mm]k_{V}(4)[/mm] = 12
>  K'(4) = 36
>  
> Ich erhalte aus den 4 Bedingungen die eindeutige Lösung
>  K(x) = [mm]2x^3-10x^2+20x+10[/mm]
>
> Nun ist es allerdings so, dass diese Kostenfunktion
> gemeinsam mit der Erlösfunktion Schnittstellen bei x = 1
> und x = 5 besitzt.
> x = 5 wäre also eine Nutzengrenze und nicht wie im
> Aufgabentext vermerkt eine Nutzenschwelle.

Hallo,

ich habe in Deiner Rechnung keinen Fehler gesehen.
Für x>5 ist der Gewinn negativ.
Ich denke, daß es im Text vllt. "Nutzengrenze" heißen sollte.
Frag' mal bei Deinen Chefs nach.
Ummodeln würde ich nichts.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de