www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Aufleitung Integral
Aufleitung Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung Integral: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 23.11.2013
Autor: Paper090

Aufgabe
Berechnen sie unbestimmte Integral:

[mm] \integral_{}^{}{ \bruch{ln(5x^4)}{4x^{7/3}} dx} [/mm]

Umgeschrieben komme ich auf:

[mm] \bruch{ln(5)}{4x^{7/3}} [/mm] + [mm] \bruch{ln(x)}{x^{7/3}} [/mm]

Ich würde nun (nach meiner Unkenntnis) den Nenner auflösen:

[mm] ln(5)*4x^{-7/3} [/mm] + [mm] ln(x)*x^{-7/3} [/mm]

Mein Problem : Wie leite ich dies auf?

f(x)*g(x)- [mm] \integral_{}^{}{f(x)*g'(x) dx} [/mm] würde ich benutzen, wo ich dann allerdings nicht weiß wie ich das Integral aufleiten soll, weil keine Konstante vorhanden ist,d.h. ich ständig wieder neu die Formel anwenden müsste.

Wäre nett, wenn mir jemand helfen könnte, bin nicht der klügste.

Schönen Abend

        
Bezug
Aufleitung Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Sa 23.11.2013
Autor: Paper090

[mm] -3*x^{-(\bruch{4}{3})*ln(5)} [/mm]

Oder wäre dies ein korrektes Ergebnis(für die Erste)?

Bezug
                
Bezug
Aufleitung Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Sa 23.11.2013
Autor: DieAcht

Hallo,

> [mm]-3*x^{-(\bruch{4}{3})*ln(5)}[/mm]
>  
> Oder wäre dies ein korrektes Ergebnis(für die Erste)?

Nein, das ist falsch!

Gruß
DieAcht

Bezug
        
Bezug
Aufleitung Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Sa 23.11.2013
Autor: abakus


> Berechnen sie unbestimmte Integral:

>

> [mm]\integral_{}^{}{ \bruch{ln(5x^4)}{4x^{7/3}} dx}[/mm]

>

> Umgeschrieben komme ich auf:

>

> [mm]\bruch{ln(5)}{4x^{7/3}}[/mm] + [mm]\bruch{ln(x)}{x^{7/3}}[/mm]

>

> Ich würde nun (nach meiner Unkenntnis) den Nenner
> auflösen:

>

> [mm]ln(5)*4x^{-7/3}[/mm] + [mm]ln(x)*x^{-7/3}[/mm]

>

> Mein Problem : Wie leite ich dies auf?

>

> f(x)*g(x)- [mm]\integral_{}^{}{f(x)*g'(x) dx}[/mm] würde ich
> benutzen, wo ich dann allerdings nicht weiß wie ich das
> Integral aufleiten soll, weil keine Konstante vorhanden
> ist,d.h. ich ständig wieder neu die Formel anwenden
> müsste.

Hallo,
das lässt sich nicht aufleiten.

Grund: Dieser Begriff existiert in der Mathematik nicht. Sage also dieses Wort hier nie wieder, wenn du nicht willst, dass du von anderen Mitgliedern dieses Forums gnadenlos gedisst werden willst ;-)

Die Lehrkraft, von der du dieses Unwort gelernt hast, gehört geprügelt...

Spaß beiseite. Der erste Nenner ln(5) IST eine Konstante, damit ist die Integration des ersten Summanden kein Problem.

Beim zweiten Bruch könnte vermutlich eine Substitution helfen.

Gruß Abakus




>

> Wäre nett, wenn mir jemand helfen könnte, bin nicht der
> klügste.

>

> Schönen Abend

Bezug
        
Bezug
Aufleitung Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Sa 23.11.2013
Autor: DieAcht

Hallo,

> Berechnen sie unbestimmte Integral:
>  
> [mm]\integral_{}^{}{ \bruch{ln(5x^4)}{4x^{7/3}} dx}[/mm]
>  
> Umgeschrieben komme ich auf:
>  
> [mm]\bruch{ln(5)}{4x^{7/3}}[/mm] + [mm]\bruch{ln(x)}{x^{7/3}}[/mm]

Genau!

[mm] \integral_{}^{}{ \bruch{ln(5x^4)}{4x^{\frac{7}{3}}} dx}=\integral_{}^{}{ \bruch{ln(5)+ln(x^4)}{4x^{\frac{7}{3}}} dx}=\frac{ln(5)}{4}\integral_{}^{}{ x^{-\frac{7}{3}} dx}+\integral_{}^{}{ ln(x)\cdot x^{-\frac{7}{3}} dx} [/mm]

Das linke Integral ist trivial und das rechte Integral lässt sich mit partieller Integration sofort lösen.

Setze dafür [mm] u'(x):=x^{-\frac{7}{3}} [/mm] und $v(x):=ln(x)$, dann gilt:

[mm] \integral_{}^{}{{u'(x)\cdot v(x)} dx}=u(x)\cdot v(x)-\integral_{}^{}{{u(x)\cdot v'(x)} dx} [/mm]

Das ist nun ein trivialer Fall, da [mm] ln'(x)=\frac{1}{x} [/mm] gilt.

>  
> Ich würde nun (nach meiner Unkenntnis) den Nenner
> auflösen:
>  
> [mm]ln(5)*4x^{-7/3}[/mm] + [mm]ln(x)*x^{-7/3}[/mm]
>  
> Mein Problem : Wie leite ich dies auf?
>  
> f(x)*g(x)- [mm]\integral_{}^{}{f(x)*g'(x) dx}[/mm] würde ich
> benutzen, wo ich dann allerdings nicht weiß wie ich das
> Integral aufleiten soll, weil keine Konstante vorhanden
> ist,d.h. ich ständig wieder neu die Formel anwenden
> müsste.
>  
> Wäre nett, wenn mir jemand helfen könnte, bin nicht der
> klügste.
>  
> Schönen Abend

Gruß
DieAcht


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de