www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Aufgaben zur Kombinatorik
Aufgaben zur Kombinatorik < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben zur Kombinatorik: Kombinatorik
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:20 Mi 17.01.2018
Autor: sasukesenpai

Aufgabe
1)     Wir betrachten alle dreistelligen Zahlen mit verschiedenen Ziffern.

a) Wie viele sind gerade ? (Lösung: 9⋅8⋅1 = 72 enden mit 0 und 8⋅8⋅4 = 256 enden mit den anderen geraden Ziffern; also sind insgesamt 72 + 256 = 328 gerade.)

b) Wie viele sind durch 5 teilbar ? (Lösung: 9⋅8⋅1 = 72 enden mit 0 und 8⋅8⋅1 = 64 mit 5; also sind insgesamt 72 + 64 = 136 durch 5 teilbar)



2)     Bestimme die Anzahl der verschiedenen Permutationen, die aus allen Buchstaben des Wortes SEEWEG gebildet werden können.

a)      Wieviele von ihnen beginnen und enden mit E ? Lösung:24

b)     In wievielen stehen die 3 E nebeneinander ? Lösung:24

c)      Wieviele beginnen mit E und enden mit G ? Lösung:12

3) Eine Gruppe besteht aus 9 Jungen und 3 Mädchen.

a)Wieviele Möglichkeiten gibt es, wenn unter den 4 Personen mindestens 1 Mädchen sein soll ? Lösung: 12über4 (=495) - 9über4 (=126) = 369

b)Wieviele Möglichkeiten gibt es, wenn unter den 4 Personen genau ein Mädchen sein soll ? 3 ⋅ 9über3 (=84) = 252

4) Ein Ehepaar hat 11 gute Bekannte. Wie viel Möglichkeiten gibt es, 5 davon zum Essen einzuladen,
a)wenn von einem Ehepaar keiner allein kommen will? (Lösung: 210)
Bitte, wenn möglich, alle Aufgaben verständlich erklären…
b) wenn 2 der Bekannten sich nicht gut verstehen und deshalb nicht zusammentreffen wollen? (Lösung: 378)

Bitte, wenn möglich, alles verständlich erklären...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufgaben zur Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Mi 17.01.2018
Autor: abakus


> 1)     Wir betrachten alle dreistelligen Zahlen mit
> verschiedenen Ziffern.
>
> a) Wie viele sind gerade ? (Lösung: 9⋅8⋅1 = 72 enden
> mit 0 und 8⋅8⋅4 = 256 enden mit den anderen geraden
> Ziffern; also sind insgesamt 72 + 256 = 328 gerade.)
>  
> b) Wie viele sind durch 5 teilbar ? (Lösung: 9⋅8⋅1 =
> 72 enden mit 0 und 8⋅8⋅1 = 64 mit 5; also sind
> insgesamt 72 + 64 = 136 durch 5 teilbar)
>  
>
>
> 2)     Bestimme die Anzahl der verschiedenen Permutationen,
> die aus allen Buchstaben des Wortes SEEWEG gebildet werden
> können.
>  
> a)      Wieviele von ihnen beginnen und enden mit E ?
> Lösung:24
>  
> b)     In wievielen stehen die 3 E nebeneinander ?
> Lösung:24
>  
> c)      Wieviele beginnen mit E und enden mit G ?
> Lösung:12
>  
> 3) Eine Gruppe besteht aus 9 Jungen und 3 Mädchen.
>  
> a)Wieviele Möglichkeiten gibt es, wenn unter den 4
> Personen mindestens 1 Mädchen sein soll ? Lösung:
> 12über4 (=495) - 9über4 (=126) = 369
>  
> b)Wieviele Möglichkeiten gibt es, wenn unter den 4
> Personen genau ein Mädchen sein soll ? 3 ⋅ 9über3 (=84)
> = 252
>  
> 4) Ein Ehepaar hat 11 gute Bekannte. Wie viel
> Möglichkeiten gibt es, 5 davon zum Essen einzuladen,
> a)wenn von einem Ehepaar keiner allein kommen will?
> (Lösung: 210)
>  Bitte, wenn möglich, alle Aufgaben verständlich
> erklären…
>  b) wenn 2 der Bekannten sich nicht gut verstehen und
> deshalb nicht zusammentreffen wollen? (Lösung: 378)
>  Bitte, wenn möglich, alles verständlich erklären...
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Das entspricht nicht der Wahrheit.
https://www.onlinemathe.de/forum/Aufgaben-zur-Kobinatorik

Und was dein Profil betrifft: Dein angeblicher Wohnort Paderborn liegt nicht in Bayern.

Bezug
        
Bezug
Aufgaben zur Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 18.01.2018
Autor: angela.h.b.

Hallo,

[willkommenmr].

Bitte beachte in Zukunft die Forenregeln.

> 1) Wir betrachten alle dreistelligen Zahlen mit
> verschiedenen Ziffern.

Überlegen wir erst einmal, wieviele dreistellige Zahlen mit verschiedenen Ziffern es gibt:

die erste Stelle der Zahl darf nicht mit 0 beginnen, sonst wäre sie maximal zweistellung.
Also haben wir für die erste Ziffer 9 Möglichkeiten.

Für die zweite Stelle dürfen wir nicht die Ziffer verwenden, die wir für die erste Stelle genommen haben, dafür aber die 0,
was 9 Möglichkeiten für die zweite Stelle ergibt.

Für die dritte Stelle dürfen wir die beiden Ziffern, die wir an erster und zweiter Stelle genommen haben, nicht verwenden,
damit bleiben 8 Möglichkeiten.

Damit kommen wir auf insgesamt 9*9*8 dreistellige Zahlen mit verschiedenen Ziffern.

Wenn Du dies verstanden hast,
kannst Du vermutlich die folgenden beiden Teilaufgaben lösen:
>

> a) Wie viele sind gerade ? (Lösung: 9⋅8⋅1 = 72 enden
> mit 0 und 8⋅8⋅4 = 256 enden mit den anderen geraden
> Ziffern; also sind insgesamt 72 + 256 = 328 gerade.)


> b) Wie viele sind durch 5 teilbar ? (Lösung: 9⋅8⋅1 =
> 72 enden mit 0 und 8⋅8⋅1 = 64 mit 5; also sind
> insgesamt 72 + 64 = 136 durch 5 teilbar)

Falls es Probleme gibt,
poste Deine Überlegungen, dann kann und mag man Dir sicher weiterhelfen.


Für die Fragen 2,3,4 erstelle, sofern Du noch Bedarf hast, bitte jeweils einen eigenen Thread und poste dort gleich Deine Überlegungen, Probleme und konkreten Fragen mit.

LG Angela






>
>
>

> 2) Bestimme die Anzahl der verschiedenen Permutationen,
> die aus allen Buchstaben des Wortes SEEWEG gebildet werden
> können.

>

> a) Wieviele von ihnen beginnen und enden mit E ?
> Lösung:24

>

> b) In wievielen stehen die 3 E nebeneinander ?
> Lösung:24

>

> c) Wieviele beginnen mit E und enden mit G ?
> Lösung:12

>

> 3) Eine Gruppe besteht aus 9 Jungen und 3 Mädchen.

>

> a)Wieviele Möglichkeiten gibt es, wenn unter den 4
> Personen mindestens 1 Mädchen sein soll ? Lösung:
> 12über4 (=495) - 9über4 (=126) = 369

>

> b)Wieviele Möglichkeiten gibt es, wenn unter den 4
> Personen genau ein Mädchen sein soll ? 3 ⋅ 9über3 (=84)
> = 252

>

> 4) Ein Ehepaar hat 11 gute Bekannte. Wie viel
> Möglichkeiten gibt es, 5 davon zum Essen einzuladen,
> a)wenn von einem Ehepaar keiner allein kommen will?
> (Lösung: 210)
> Bitte, wenn möglich, alle Aufgaben verständlich
> erklären…
> b) wenn 2 der Bekannten sich nicht gut verstehen und
> deshalb nicht zusammentreffen wollen? (Lösung: 378)
> Bitte, wenn möglich, alles verständlich erklären...
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de