www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Anzahl der Möglichkeiten
Anzahl der Möglichkeiten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Möglichkeiten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 09.03.2015
Autor: iurie

Aufgabe
Eine Dualzahl hat nur Nullen und Eisen als Ziffer. Computer arbeiten mit 8-stelligen, 16-stelligen oder 32-stelligen Dualzahl. Wie viele verschiedene Zahlen kann man für jede dieser Stellenzahlen bilden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Soweit wie ich das verstanden habe soll man berechnen wie viele  Möglichkeiten es für 8, 16 und 32 Stellen gibt. Nur wie gehe ich vor?

        
Bezug
Anzahl der Möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 09.03.2015
Autor: steppenhahn

Hallo,

> Eine Dualzahl hat nur Nullen und Eisen als Ziffer. Computer
> arbeiten mit 8-stelligen, 16-stelligen oder 32-stelligen
> Dualzahl. Wie viele verschiedene Zahlen kann man für jede
> dieser Stellenzahlen bilden?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Soweit wie ich das verstanden habe soll man berechnen wie
> viele  Möglichkeiten es für 8, 16 und 32 Stellen gibt.
> Nur wie gehe ich vor?


Machen wir mal nur mit 8 Stellen, die anderen gehen genau gleich.

Es ist eine Aufgabe zu Kombinatorik, und sicher hattet ihr in der Schule schon Formeln oder andere Techniken, solche Aufgaben zu lösen (zum Beispiel Baumdiagramme??).

Du hast eine Zahl mit 8 Stellen, und für jede Stelle kommen die Zahlen 0 und 1 in Frage.

Das bedeutet, du hast 8 Stellen, und für jede Stelle gibt es 2 Möglichkeiten.

Weil alle Stellen unabhängig voneinander 0 oder 1 annehmen können, gibt es insgesamt

2*2*2*2*2*2*2*2

Möglichkeiten.

----

Um dir das zu verdeutlichen, kann es helfen, wenn du mal alle Möglichkeiten für zum Beispiel 3 Stellen aufschreibst:

000
001
010
011
100
101
110
111

Du siehst: Es sind genau 8 = 2*2*2 Stück.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de