www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Anzahl der Kombinationen
Anzahl der Kombinationen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Kombinationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 07.05.2016
Autor: skn89

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://www.gutefrage.net/frage/anzahl-der-k-kombinationen-mit-a-elementen-b1-aus-einer-n-menge?foundIn=notification-center&randomReloadId=436868#comment-124151659

Hallo,

interessant ist die Anzahl der k-Kombinationen, bei denen ein Element "a" aus einer n-Menge b-mal (oder genau b-mal) vorkommt. Beispiel: Ich würfele 4-mal und interessiere mich für die Anzahl der Kombinationen mit genau zwei Einser (andere zwei Zahlen sollen unterschiedlich sein: 1123, 1124, 1125, 1126, 1134, 1135, 1136, 1145, 1146, 1156). Es sind 4-Kombinationen aus 6-Menge mit Wiederholung. Wenn die Gesamtanzahl der Kombinationen [mm] \vektor{9 \\ 4} [/mm] 126 ist, dann ist es mir doch schwierig zu sagen, wie viel davon zweimal "1" ethalten, oder dreimal "3".

Wenn man in einfachen Fällen das Baumdiagramm oder Ähnliches benutzen kann, wird es schwieriger, wenn der Würfel 20-mal oder 1000-mal geworfen wird. Die kombinatorische Lösung ist verlangt.

Wie werden Sie vorgehen? Ich werde für einen hilsfreichen Gedanke oder einen theoretischen Hinweis sehr dankbar.

        
Bezug
Anzahl der Kombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Sa 07.05.2016
Autor: Al-Chwarizmi


> Hallo,
>  
> interessant ist die Anzahl der k-Kombinationen, bei denen
> ein Element "a" aus einer n-Menge b-mal (oder genau b-mal)
> vorkommt. Beispiel: Ich würfele 4-mal und interessiere
> mich für die Anzahl der Kombinationen mit genau zwei
> Einser (andere zwei Zahlen sollen unterschiedlich sein:
> 1123, 1124, 1125, 1126, 1134, 1135, 1136, 1145, 1146,
> 1156). Es sind 4-Kombinationen aus 6-Menge mit
> Wiederholung. Wenn die Gesamtanzahl der Kombinationen
> [mm]\vektor{9 \\ 4}[/mm] 126 ist, dann ist es mir doch schwierig zu
> sagen, wie viel davon zweimal "1" ethalten, oder dreimal
> "3".
>  
> Wenn man in einfachen Fällen das Baumdiagramm oder
> Ähnliches benutzen kann, wird es schwieriger, wenn der
> Würfel 20-mal oder 1000-mal geworfen wird. Die
> kombinatorische Lösung ist verlangt.


Hallo skn89

        [willkommenmr]

habe ich richtig verstanden:  eine Grundmenge G mit n Elementen,
ein bestimmtes Element a aus G und zwei natürliche Zahlen b und k
(mit b≤k≤n) sind vorgegeben. Gesucht ist die Anzahl jener (ungeordneten)
Kombinationen von Elementen aus G, die genau b mal das Element a
und dazu (k-b) andere und untereinander verschiedene Elemente
von G enthalten.

Falls das die richtige Interpretation ist, ist auch die Lösung recht
einfach. Da das b-malige Auftreten des Elementes a quasi "fix
gebucht" ist, gibt dies auch gar keine Wahlmöglichkeiten mehr,
sondern nur eben diese einzige vorgeschriebene Möglichkeit.
Dazu kann man nun jeweils noch genau (k-b) unterschiedliche
Elemente aus den übrigen (n-1) Elementen auswählen. Dazu
gibt es natürlich genau  [mm] $\pmat{n-1\\k-b}$ [/mm] Möglichkeiten.
Dies ist dann auch schon die gefragte Anzahl.

LG ,   Al-Chwarizmi    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de