www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Anfangswertproblem
Anfangswertproblem < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 07.06.2016
Autor: Ice-Man

Aufgabe
Ermitteln Sie die Lösung, die die Anfangsbedingungen erfüllt.
Die allgemeine Lösung ist bekannt.

y'''+y''+3y'-5y=0

y(0)=1, y'(0)=-1, y''(0)=5

Hallo,

ich weis leider nicht so richtig wie ich vorgehen soll.

Mein Ansatz wäre wie folgt,

[mm] s^{3}Y(s)-s^{2}y(0)-sy'(0)-s^{2}Y(s)-sy(0)-y'(0)+3[sY(s)-y(0)]-5Y(s) [/mm]

[mm] s^{3}Y(s)-s^{2}+s-s^{2}Y(s)-s+1+3sY(s)-3+5Y(s) [/mm]

[mm] Y(s)[s^{3}-s^{2}+3s-5]-2-s^{2}=0 [/mm]

[mm] Y(s)=\bruch{s^{2}+2}{s^{3}-s^{2}+3s-5} [/mm]



Wäre mein Anfang korrekt, oder bin ich auf dem absolut falschem Weg?

Ich wäre dankbar wenn mir jemand weiterhelfen könnte.



        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mi 08.06.2016
Autor: HJKweseleit

Mit dem Ansatz [mm] y=ae^{kx} [/mm] erhältst du die Gleichung

[mm] k^3+k^2+3k-5=0 [/mm] mit den Lösungen k=1, k=-1-2i und k=-1+2i und damit

[mm] y=ae^x+be^{(-1-2i)x}+ce^{(-1+2i)x}. [/mm]

Einsetzen der Randbedingungen führt auf die Gleichungen

a+b+c=1
a-(1+2i)b+(2i-1)c=-1
a-(-3+4i)b-(-3-4i)c=5

mit den Lösungen [mm] a=\bruch{9-i}{2}, [/mm] b=-2-2i und [mm] c=\bruch{-3+5i}{2}. [/mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Falls dein Ansatz nach Laplace die selbe Lösung liefert, ist alles ok.

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Mi 08.06.2016
Autor: Ice-Man

Danke für deine Hilfe,

aber ich habe als Lösung angegeben,

[mm] y=e^{x}-e^{-x}sin(2x) [/mm]

Und das ist doch nicht das gleiche, oder?

Bezug
                        
Bezug
Anfangswertproblem: Schreibfehler
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 08.06.2016
Autor: HJKweseleit

Sorry,

durch einen Schreibfehler habe ich das Gleichungssystem nicht korrekt aufgeschrieben und dadurch eine falsche Lösung bekommen.


[mm] \red{Falsch:} [/mm]


a+b+c=1
a-(1+2i)b+(2i-1)c=-1
a-(-3+4i)b [mm] \red{\textbf{-}} [/mm] (-3-4i)c=5

mit den Lösungen [mm] \red{a=\bruch{9-i}{2}, b=-2-2i} [/mm] und [mm] \red{c=\bruch{-3+5i}{2}. } [/mm]  

[mm] \blue{Richtig:} [/mm]

a+b+c=1
a-(1+2i)b+(2i-1)c=-1
a-(-3+4i)b [mm] \textbf{\blue{+}} [/mm] (-3-4i)c=5

mit den Lösungen [mm] a=\blue{1}, [/mm]  b = [mm] \blue{\bruch{-i}{2}} [/mm] und c = [mm] \blue{\bruch{i}{2}}. [/mm]  

Das führt nun zu

[mm] y=e^x-\bruch{i}{2}e^{-x-2ix}+\bruch{i}{2}e^{-x+2ix} [/mm]

[mm] =e^{x}+\bruch{1}{2i}e^{-x}*e^{-2ix}-\bruch{1}{2i}e^{-x}*e^{2ix} [/mm]            (mit [mm] \bruch{1}{i}=-i) [/mm]

[mm] =e^{x}+e^{-x}*(\bruch{e^{-2ix}-e^{2ix}}{2i} [/mm] )

[mm] =e^{x}-e^{-x}*(\bruch{e^{2ix}-e^{-2ix}}{2i} [/mm] )

[mm] =e^{x}-e^{-x}*sin(2x). [/mm]  

Ja, es ist das Gleiche, ich habe dich hoffentlich durch den Rechenfehler nicht zu sehr irritiert.

Vermutlich geht die Lösung über Laplace schneller und sicherer, vorausgesetzt, man hat die entsprechenden Transformationstafeln.

Bezug
        
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Mi 08.06.2016
Autor: Ice-Man

Ich habe jetzt meinen Ansatz nochmal kontrolliert,

wäre der Ansatz denn richtig?

y'''+y''+3y'+5=0

[mm] s^{3}Y(s)-s^{2}y(0)-sy'(0)-y''(0)+s^{2}Y(s)-sy(0)-y'(0)+3[sY(s)-y(0)]-5Y(s) [/mm]

[mm] Y(s)=\bruch{s^{2}+7}{s^{3}+s^{2}+3s+5} [/mm]

[mm] s_{1}=1 [/mm]
[mm] s_{2}=-1+2j [/mm]
[mm] s_{3}=1-2j [/mm]

Bezug
                
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mi 08.06.2016
Autor: HJKweseleit


> Ich habe jetzt meinen Ansatz nochmal kontrolliert,
>  
> wäre der Ansatz denn richtig?
>  
> y'''+y''+3y'+5=0

Du meinst y'''+y''+3y' [mm] \red{-} [/mm] 5 [mm] \red{y}=0 [/mm]

>  
> [mm]s^{3}Y(s)-s^{2}y(0)-sy'(0)-y''(0)+s^{2}Y(s)-sy(0)-y'(0)+3[sY(s)-y(0)]-5Y(s)[/mm]

Du meinst [mm] s^{3}Y(s)-s^{2}y(0)-sy'(0)-y''(0)+s^{2}Y(s)-sy(0)-y'(0)+3[sY(s)-y(0)]-5Y(s) \red{=0} [/mm]

>  
> [mm]Y(s)=\bruch{s^{2}+7}{s^{3}+s^{2}+3s+5}[/mm]

Du meinst [mm] Y(s)=\bruch{s^{2}+7}{s^{3}+s^{2}+3s \red{-} 5} [/mm]

>  
> [mm]s_{1}=1[/mm]
>  [mm]s_{2}=-1+2j[/mm]
>  [mm]s_{3}=1-2j[/mm]  

Damit ergibt sich nun  [mm]s_{3}= \red{-}1-2j[/mm]

und daraus

[mm] Y(s)=\bruch{s^{2}+7}{s^{3}+s^{2}+3s- 5}=\bruch{1}{s-1}-\bruch{\bruch{i}{2}}{s+1+2i}+\bruch{\bruch{i}{2}}{s+1-2i} [/mm]


Bezug
                        
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Mi 08.06.2016
Autor: Ice-Man

Ja, sorry, ich hatte da den ein oder anderen Tippfehler.

Also auf jeden Fall noch einmal vielen Dank.

Bis zum vorletzten Schritt kann ich ja alles nachvollziehen.
Doch beim "rücktransformieren" habe ich noch ein Problem.

Den ersten Term bekomm ich ja noch hin. Aber wie bekomme ich denn aus Term 2 und 3 den Lösungsausdruck

[mm] -e^{-x}sin(2x) [/mm]

Das verstehe ich leider immer noch nicht.

Bezug
                                
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Do 09.06.2016
Autor: HJKweseleit

Hilft dir folgendes weiter:

[mm] Y(s)=\bruch{s^{2}+7}{s^{3}+s^{2}+3s- 5}=\bruch{1}{s-1}-\bruch{2}{s^2+2s+5}? [/mm]

Bezug
                                        
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Do 09.06.2016
Autor: Ice-Man

Ich bin ehrlich.
Leider nein, ich habe keine Ahnung wie das funktioniert.

Bezug
                                                
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Fr 10.06.2016
Autor: fred97


> Ich bin ehrlich.
> Leider nein, ich habe keine Ahnung wie das funktioniert.

Schau mal hier, unter "Korrespondenztabelle",

https://de.wikipedia.org/wiki/Laplace-Transformation

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de