www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Amplitude bestimmen
Amplitude bestimmen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Amplitude bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 05.04.2010
Autor: MontBlanc

Aufgabe
Lösen Sie die DGL für den ungedämpften linearen Oszillator (für einen Körper mit masse m=1) [mm] x''+\omega^2*x=F(t) [/mm]
mit [mm] F(t)=\begin{cases} 1, & \mbox{für } 0T \end{cases} [/mm] mit den Anfangsbedingungen x(0)=x'(0)=0

Zeigen Sie, dass für t>T die Oszillationsamplitude gegeben ist durch [mm] \bruch{2}{\omega^2}*\left|sin\left(\bruch{\omega*T}{2}\right)\right| [/mm]

Hallo,

die vorgehensweise ist mir klar, ich habe die DGL gelöst, für den Fall 0<t<T bekomme ich die allgemeine Lösung

[mm] x(t)=\bruch{1}{\omega^2}*(1-cos(\omega*t)) [/mm]

für t>T

[mm] x(t)=A*cos(\omega*t)+B*sin(\omega*t) [/mm]

Meine Frage ist jetzt folgende:

Um das Ergebnis zu bekommen, brauche ich Stetigkeit bei x(t) und x'(t) an der Stelle T . Mein Professor hat für die zweite Gleichung die Lösung angegeben [mm] x(t)=A*cos(\omega*(t-T))+B*sin(\omega(t-T)) [/mm] damit ist das Lösen des Stetigkeitsproblems an der Stelle T ziemlich einfach, weil die Sinusfunktionen so alle wegfallen. Aber wie kann er das machen ? Wieso kann er dort t-T einsetzen, ich wäre da im Leben nicht drauf gekommen und habe immer wieder versucht das ganze zu lösen  eben ohne (t-T) sondern einfach nur T. Theoretisch müsste ich doch diesselbe Lösung bekommen, oder ?

Tu ich aber nicht. Wäre schon, wenn mir das jemand erklären könnte.

Frohe Rest-Ostern.

LG



        
Bezug
Amplitude bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 05.04.2010
Autor: rainerS

Hallo!

> Lösen Sie die DGL für den ungedämpften linearen
> Oszillator (für einen Körper mit masse m=1)
> [mm]x''+\omega^2*x=F(t)[/mm]
> mit [mm]F(t)=\begin{cases} 1, & \mbox{für } 0T \end{cases}[/mm]
> mit den Anfangsbedingungen x(0)=x'(0)=0
>  
> Zeigen Sie, dass für t>T die Oszillationsamplitude gegeben
> ist durch
> [mm]\bruch{2}{\omega^2}*\left|sin\left(\bruch{\omega*T}{2}\right)\right|[/mm]
>  Hallo,
>  
> die vorgehensweise ist mir klar, ich habe die DGL gelöst,
> für den Fall 0<t<T bekomme ich die allgemeine Lösung
>  
> [mm]x(t)=\bruch{1}{\omega^2}*(1-cos(\omega*t))[/mm]
>  
> für t>T
>  
> [mm]x(t)=A*cos(\omega*t)+B*sin(\omega*t)[/mm]
>  
> Meine Frage ist jetzt folgende:
>  
> Um das Ergebnis zu bekommen, brauche ich Stetigkeit bei
> x(t) und x'(t) an der Stelle T . Mein Professor hat für
> die zweite Gleichung die Lösung angegeben
> [mm]x(t)=A*cos(\omega*(t-T))+B*sin(\omega(t-T))[/mm] damit ist das
> Lösen des Stetigkeitsproblems an der Stelle T ziemlich
> einfach, weil die Sinusfunktionen so alle wegfallen. Aber
> wie kann er das machen ? Wieso kann er dort t-T einsetzen,

Rechnerisch: Wende die Additionstheoreme auf [mm] $x(t)=A*\cos(\omega*(t-T))+B*\sin(\omega(t-T))$ [/mm] an, und du siehst, dass das nur eine Umdefinition der Konstanten A und B ist.

Anschaulich: das Verhältnis von A und B bestimmt (zusammen mit den Vorzeichen) die Phasenverschiebung gegenüber einer reinen Sinusfunktion. Daher kannst du auch eine beliebig verschobene Sinusfunktion nehmen.

> ich wäre da im Leben nicht drauf gekommen und habe immer
> wieder versucht das ganze zu lösen  eben ohne (t-T)
> sondern einfach nur T. Theoretisch müsste ich doch
> diesselbe Lösung bekommen, oder ?

Ja.

> Tu ich aber nicht. Wäre schon, wenn mir das jemand
> erklären könnte.

Wenn du deine Rechnung postest, können wir dir auch sagen, warum.  

  Viele Grüße
    Rainer



Bezug
                
Bezug
Amplitude bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 05.04.2010
Autor: MontBlanc

Hallo rainer,

danke für deine schnelle antwort. Nochmal eine kurze Nachfrage, bevor ich an die Rechnung gehe:

Wieso genau brauche ich eigentlich Stetigkeit an der Stelle T um einen Ausdruck für die Amplitude für t>T zu finden ?

Also mein Ansatz ist der folgende:

Lösung für 0<t<T:

[mm] x_{0
[mm] x'_{0

für t>T

[mm] x_{t>T}(t)=A*cos(\omega*t)+B*sin(\omega*t) [/mm]

[mm] x'_{t>T}(t)=-A*\omega*sin(\omega*t)+B*\omega*cos(\omega*t) [/mm]

(I) [mm] x_{0T}(T) [/mm] und (II) $ x'_{t>T}(T)=x'_{0<t<T}(T) $

(I) [mm] \bruch{1}{\omega^2}*(1-cos(\omgea*T))=A*cos(\omega*T)+B*sin(\omega*T) [/mm]

(II) [mm] \bruch{1}{\omega}*(sin(\omega*T))=-A*\omega*sin(\omega*T)+B*\omega*cos(\omega*T) [/mm]

Ich denke soweit sollte das stimmen... oder doch nicht ?

Lg

Bezug
                        
Bezug
Amplitude bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 05.04.2010
Autor: rainerS

Hallo!

> Hallo rainer,
>  
> danke für deine schnelle antwort. Nochmal eine kurze
> Nachfrage, bevor ich an die Rechnung gehe:
>  
> Wieso genau brauche ich eigentlich Stetigkeit an der Stelle
> T um einen Ausdruck für die Amplitude für t>T zu finden
> ?

Irgendeinen Ansatz brauchst du, um die Bewegung für $t>T$ festzulegen. Stetigkeit der Funktion $x(t)$ bedeutet ja, dass die Auslenkung nicht springt; Stetigkeit von $x'(t)$, dass die Geschwindigkeit nicht springt. Die Erfahrung bzw das Experiment sagt uns, dass das sinnvolle Ansätze sind.

> Also mein Ansatz ist der folgende:
>  
> Lösung für 0<t<T:
>  
> [mm]x_{0
>  
> [mm]x'_{0
>  
>
> für t>T
>  
> [mm]x_{t>T}(t)=A*cos(\omega*t)+B*sin(\omega*t)[/mm]
>  
> [mm]x'_{t>T}(t)=-A*\omega*sin(\omega*t)+B*\omega*cos(\omega*t)[/mm]
>  
> (I) [mm]x_{0T}(T)[/mm] und (II)
> [mm]x'_{t>T}(T)=x'_{0
>  
> (I)
> [mm]\bruch{1}{\omega^2}*(1-cos(\omega*T))=A*cos(\omega*T)+B*sin(\omega*T)[/mm]
>  
> (II)
> [mm]\bruch{1}{\omega}*(sin(\omega*T))=-A*\omega*sin(\omega*T)+B*\omega*cos(\omega*T)[/mm]
>  
> Ich denke soweit sollte das stimmen... oder doch nicht ?

Ja, das ist ein lineares Gleichunssystem für A und B. Am einfachsten wird es, wenn du die zweite Gleichung durch [mm] $\omega$ [/mm] teilst. Es kommt heraus

[mm] A= \bruch{1}{\omega^2} ( \cos \omega T -1) [/mm], [mm] B= \bruch{1}{\omega^2} \sin \omega T [/mm].

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de