www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Allg. Lösung konstante Koeffiz
Allg. Lösung konstante Koeffiz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Mo 22.08.2011
Autor: cruemel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Bestimmen Sie alle Lösungen des DGLSystems
$x' = \pmat{ 1 & 0 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 }x$


Hallo Alle,
irgendwie steh ich grad total aufm Schlauch.
Ich bin so gut wie fertig mit dieser Aufgabe, mir fehlt jetzt nur noch das Fundamentalsystem und die allgemeine Lösung.

Der dreifache Eigenwert ist 1.
Der Lösungsraum ist zweidimensional mit den Vektoren
$\vec{u} = \vektor{1 \\ 0 \\ 1}$ und $\vec{v} = \vektor{0 \\ 1 \\ 0}$.

Nun bestimme ich einen Hauptvektor
$\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{1 \\ 0 \\ 1}$

Als Ergebnis erhalte ich z.B. $\vec{w}\vektor{0 \\ 1 \\ 1}$

Jetzt meine Frage, wie lautet das Fundamentalsystem und die allgemeine Lösung?

Ist es
$x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t  + C \bruch{t^2}{2}}\vektor{0 \\ 1 \\ 1}e^t   $

oder
$x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t  + C \bruch{t^2}{2}}(t \vektor{1 \\ 0 \\ 1} + \vektor{0 \\ 1 \\ 1}) e^t $

Oder sind beide richtig oder doch ganz anders?

Irgendwie scheint mir meine vorhandene Literatur etwas widersprüchlich.

Wäre super wenn mir jemand weiterhelfen könnte.

Grüße crümel


        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Mo 22.08.2011
Autor: angela.h.b.


> Nun bestimme ich einen Hauptvektor
>  [mm]\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{1 \\ 0 \\ 1}[/mm]
>  
> Als Ergebnis erhalte ich z.B. [mm]\vec{w}\vektor{0 \\ 1 \\ 1}[/mm]

Hallo,

[mm] \vec{w}=\vektor{0 \\ 1 \\ 1} [/mm] ist aber keine Lösung Deiner Gleichung.

Es ist aber [mm] \pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{0 \\ 1 \\ 0}. [/mm]


>  
> Jetzt meine Frage, wie lautet das Fundamentalsystem und die
> allgemeine Lösung?
>  
> Ist es
> [mm]x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t + C \bruch{t^2}{2}}\vektor{0 \\ 1 \\ 1}e^t [/mm]
>  
> oder
> [mm]x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t + C \bruch{t^2}{2}}(t \vektor{1 \\ 0 \\ 1} + \vektor{0 \\ 1 \\ 1}) e^t[/mm]
>  
> Oder sind beide richtig oder doch ganz anders?

Ich würd' sagen: anders.

>  
> Irgendwie scheint mir meine vorhandene Literatur etwas
> widersprüchlich.

Welche Literatur wollen wir nehmen, um die Sache zu besprechen und die Diskrepanzen zu klären?

Gruß v. Angela


Bezug
                
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mo 22.08.2011
Autor: cruemel

Hallo, ich glaub es war im Aulbach wo etwas von polynomen als Vorfaktoren drin stand. Wie geht es nun wirklich??
Grüße
crümel

Bezug
                        
Bezug
Allg. Lösung konstante Koeffiz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Mo 22.08.2011
Autor: cruemel

Achja, das mit dem Hauptvektor war ein Rechenfehler:


[mm] $\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{0 \\ 1 \\0 }$ [/mm]
Richtiges Ergebnis
[mm] $\vec{w}\vektor{-1 \\ 0 \\ 0}$ [/mm]

Bezug
                        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 22.08.2011
Autor: angela.h.b.


> Hallo, ich glaub es war im Aulbach wo etwas von polynomen
> als Vorfaktoren drin stand. Wie geht es nun wirklich??

Hallo,

irgendwie hätte ich gedacht, daß Du jetzt mal hinschreibst, was in Deinem Aulbach oder sonstwo steht und wo die Diskrepanzen sind...

Du hast zur Kenntnis genommen, daß Dein Hauptvektor [mm] \vec{w} [/mm] die Gleichung [mm] A\vec{w}=\vec{u} [/mm] nicht löst?
Er löst aber die Gleichung [mm] A\vec{w}=\vec{v}, [/mm] ist insofern also doch brauchbar.

Du hast jetzt die Basis [mm] (\vec{u}, \underbrace{ \vec{v}=(A-1*E)\vec{w},\vec{w}}_{Hauptvektorkette}). [/mm]

Du bekommst das Fundamentalsystem [mm] (y_1, y_2, y_3) [/mm] mit

[mm] y_1=e^{1*t}*\vec{u}, [/mm]

[mm] y_2=e^{1*t}*\vec{v}, \qquad y_3=e^{1*t}*(\bruch{t^1}{1!}*\vec{v}+\vec{w})=e^{1*t}*(t*\vec{v}+\vec{w}), [/mm]

und jede Lösung von x'(t)=Ax(t) ist eine Linearkombination von [mm] (y_1, y_2, y_3). [/mm]
Rechne nach, daß es stimmt!

Gruß v. Angela




Bezug
                                
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Mo 22.08.2011
Autor: cruemel

Ah danke schon mal, eines ist mir aber noch unklar, ich hätte gedacht, man muss bereits bei gleichen Eigenwerten zu den  Eigenvektoren noch das Polynom multiplizieren?

Also
$ [mm] y_1=e^{1\cdot{}t}\cdot{}\vec{u} [/mm] $ und bereits bei
[mm] $y_2=e^{1*t}*\bruch{t^1}{1!}*\vec{v}$ [/mm] schreiben?

Das ist doch immer so bei mehrfachen Eigenwerten?

Bezug
                                        
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mo 22.08.2011
Autor: cruemel

Hm, ich glaub ich hab da was verwechselt. Bei eindimensionalen Problemen (also zB [mm] $y''+a_0 [/mm] y' + [mm] a_1 [/mm] =0$) multipliziert man grundsätzlich bei Eigenwerten mit Vielfachheit größer eins ein Polynom der Form [mm] $1,x,x^2, x^3,...$ [/mm]
Bei Systemen ist ja die lineare Unabhängigkeit schon gegeben aufgrund der linear unabhängigen Vektoren, oder?

Bezug
                                                
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 22.08.2011
Autor: MathePower

Hallo cruemel,

> Hm, ich glaub ich hab da was verwechselt. Bei
> eindimensionalen Problemen (also zB [mm]y''+a_0 y' + a_1 =0[/mm])
> multipliziert man grundsätzlich bei Eigenwerten mit
> Vielfachheit größer eins ein Polynom der Form [mm]1,x,x^2, x^3,...[/mm]
>  
> Bei Systemen ist ja die lineare Unabhängigkeit schon
> gegeben aufgrund der linear unabhängigen Vektoren, oder?


Das ist richtig, sofern es zu einem Eigenwert
mehrere Eigenvektoren gibt.


Gruss
MathePower

Bezug
                                        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 22.08.2011
Autor: angela.h.b.


> Ah danke schon mal, eines ist mir aber noch unklar, ich
> hätte gedacht, man muss bereits bei gleichen Eigenwerten
> zu den  Eigenvektoren noch das Polynom multiplizieren?
>  
> Also
>  [mm]y_1=e^{1\cdot{}t}\cdot{}\vec{u}[/mm] und bereits bei
>  [mm]y_2=e^{1*t}*\bruch{t^1}{1!}*\vec{v}[/mm] schreiben?
>  
> Das ist doch immer so bei mehrfachen Eigenwerten?

Hallo,

nein.
Es wäre ganz gut zu wissen, was genau in den Unterlagen, mit denen Du arbeitest, steht. Dann könnte ich mich mit meinen Ausführungen nämlich exakt darauf beziehen.

Du hast zum dreifachen Eigenwert hier die Eigenvektoren [mm] \vec{u} [/mm] und [mm] \vec{v}. [/mm]
Um eine Basis des [mm] \IR^3 [/mm] zu haben, brauchen wir einen weiteren Vektor [mm] \vec{w}, [/mm] welchen wir so bestimmen, daß [mm] (A-1*E)\vec{w}=\vec{v}. [/mm]
Dies hast Du getan, die Basis ist komplett.
Sie besteht aus zwei Hauptvektorketten:

1. die sehr kurze Kette [mm] \vec{u} [/mm]
2. die längere Kette [mm] \vec{v}, \vec{w} [/mm]

Die erste Kette liefert [mm] y_1(t)=e^{1*t}*\bruch{x^0}{0!}\vec{u}=e^{t}*\vec{u}, [/mm]
von der zweiten Kette bekommen wir
[mm] y_2(t)=e^{1*t}*\bruch{x^0}{0!}\vec{v}=e^{t}\vec{v}, [/mm]
[mm] y_3(t)=e^{1*t}*(\bruch{x^1}{1!}\vec{v}+\bruch{x^0}{0!}\vec{w}). [/mm]


Anders wäre es, wenn wir einen dreifachen Eigenwert hätten und der Eigenraum die Dimension 1 hätte.

Dann würden wir nur eine Hauptraumkette bauen, welche aus drei Vektoren besteht.

Gruß v. Angela






Bezug
                                                
Bezug
Allg. Lösung konstante Koeffiz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 22.08.2011
Autor: cruemel

Ah ok, mir war nicht klar, dass mit die Hauptvektorketten zu einem Eigenwert getrennt betrachtet.
Das mit der Literatur ist halt schwierig, ich hab hier fünf Bücher aus der Bib rumliegen, und dann nochmal ca 5 Ebooks und diverse Quellen aus dem Internet.... Daher weiß ich auch nicht mehr was ich wo gelesen hab :-D

Vielen Dank auf jedem Fall für die ausführliche Erklärung.
Grüße crümel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de