www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Ableitung mit Parameter
Ableitung mit Parameter < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung mit Parameter: Korrektur , Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:10 Do 15.10.2009
Autor: Melli91

Aufgabe
gt(x)=2t+2tcos(tx)
Bestimmen Sie den Wendepunkt von Gt, dessen x-Koordinate im Intervall [0;pi/t] liegt.  

Hallo,

ich habe die erste und die zweite Ableitung gemacht, weiß allerdings nicht sicher ob diese stimmen.
1. ableitung : -2t²sin(tx)
2. Ableitung: -2t³cos (tx)

ich setze die 2. ableitung =0.
Mein Problem ist, dass ich nicht weiß wie ich nun zu meinem x-Wert komme. Ich habe schon überlegt einen Wert für t einzusetzen allerdings komme ich so auch nicht weiter.
Ich würde mich freuen wenn mir jemand helfen könnte (=

Lg Melli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 15.10.2009
Autor: Adamantin


> gt(x)=2t+2tcos(tx)
>  Bestimmen Sie den Wendepunkt von Gt, dessen x-Koordinate
> im Intervall [0;pi/t] liegt.
> Hallo,
>  
> ich habe die erste und die zweite Ableitung gemacht, weiß
> allerdings nicht sicher ob diese stimmen.
> 1. ableitung : -2t²sin(tx)

[ok]

>  2. Ableitung: -2t³cos (tx)

[ok]

>  
> ich setze die 2. ableitung =0.

[ok]

>  Mein Problem ist, dass ich nicht weiß wie ich nun zu
> meinem x-Wert komme. Ich habe schon überlegt einen Wert
> für t einzusetzen allerdings komme ich so auch nicht
> weiter.
> Ich würde mich freuen wenn mir jemand helfen könnte (=
>  
>

Nunja, du hast ja erstmal ein Produkt, das besteht aus [mm] -2t^3 [/mm] und cos(tx)

Klar ist, eine Lösung liegt für t=0 vor, sofern dies nicht von vornherein ausgeschlossen ist. Die zweite NST muss bei cos(tx)=0 liegen.

Nun, wo wird denn cos(x)=0 ? Doch nur bei 90° und 270° (360-90°), oder im Bogenmaß bei [mm] $\bruch{\pi}{2}$ [/mm] und [mm] $\bruch{3}{2}*\pi$ [/mm]

Nun, wenn nun aber dort ein [mm] tx=\bruch{\pi}{2} [/mm] steht, muss wohl für x [mm] \bruch{\pi}{2t} [/mm] gelten

Probe: Wäre t=1, dann würde gelten cos(x) hat die NST bei [mm] \bruch{\pi}{2*1} [/mm] und das ist korrekt.

Wäre t=2 hätten wir cos(2x), dass seine NST bei [mm] \bruch{\pi}{4} [/mm] hätte, was korrekt ist. So kannst du die entsprechenden Stellen finden, allerdings nur in allgemeiner Form, da du ja zudem auch im Intervall diesen Parameter berücksichtigen musst.

Bezug
                
Bezug
Ableitung mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Do 15.10.2009
Autor: Melli91

Okay dankeschön (=. Jetzt weiß ich, was mein Anfangsfehler war.

Ich hab jetzt weiter gerechnet und meinen y-Wert berechnet. Ich komm auf gt(x)=2t

Stimmt das dann=> > gt(x)=2t+2tcos(tx)

>  >  Bestimmen Sie den Wendepunkt von Gt, dessen
> x-Koordinate
> > im Intervall [0;pi/t] liegt.
> > Hallo,
>  >  
> > ich habe die erste und die zweite Ableitung gemacht, weiß
> > allerdings nicht sicher ob diese stimmen.
> > 1. ableitung : -2t²sin(tx)
>  
> [ok]
>  
> >  2. Ableitung: -2t³cos (tx)

>  
> [ok]
>  
> >  

> > ich setze die 2. ableitung =0.
>  
> [ok]
>  
> >  Mein Problem ist, dass ich nicht weiß wie ich nun zu

> > meinem x-Wert komme. Ich habe schon überlegt einen Wert
> > für t einzusetzen allerdings komme ich so auch nicht
> > weiter.
> > Ich würde mich freuen wenn mir jemand helfen könnte (=
>  >  
> >
>
> Nunja, du hast ja erstmal ein Produkt, das besteht aus
> [mm]-2t^3[/mm] und cos(tx)
>  
> Klar ist, eine Lösung liegt für t=0 vor, sofern dies
> nicht von vornherein ausgeschlossen ist. Die zweite NST
> muss bei cos(tx)=0 liegen.
>  
> Nun, wo wird denn cos(x)=0 ? Doch nur bei 90° und 270°
> (360-90°), oder im Bogenmaß bei [mm]\bruch{\pi}{2}[/mm] und
> [mm]\bruch{3}{2}*\pi[/mm]
>  
> Nun, wenn nun aber dort ein [mm]tx=\bruch{\pi}{2}[/mm] steht, muss
> wohl für x [mm]\bruch{\pi}{2t}[/mm] gelten
>  
> Probe: Wäre t=1, dann würde gelten cos(x) hat die NST bei
> [mm]\bruch{\pi}{2*1}[/mm] und das ist korrekt.
>
> Wäre t=2 hätten wir cos(2x), dass seine NST bei
> [mm]\bruch{\pi}{4}[/mm] hätte, was korrekt ist. So kannst du die
> entsprechenden Stellen finden, allerdings nur in
> allgemeiner Form, da du ja zudem auch im Intervall diesen
> Parameter berücksichtigen musst.


Bezug
                        
Bezug
Ableitung mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Do 15.10.2009
Autor: Steffi21

Hallo, du berechnest jetzt offenbar den Wendepunkt

[mm] 0=-2t^{3}*cos(tx) [/mm] der Wendepunkt liegt an der Stelle [mm] x_W=\bruch{\pi}{2t} [/mm] somit ist 2t korrekt, denn [mm] cos(\bruch{\pi}{2})=0 [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de