www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Do 25.06.2009
Autor: Denny22

Hallo an alle,

irgendwie stehe ich gerade auf dem Schlauch. Ich habe eine Funktion
     [mm] $f:\IR^3\longrightarrow\IR^3$ [/mm] mit [mm] $x\longmapsto [/mm] f(x)$
Die 1. Ableitung dieser Funktion ist die Jacobi-Matrix [mm] $J_f\in\IR^{3\times 3}$, [/mm] daher lässt sich die 1. Ableitung als Abbildung auffassen durch
     [mm] $f':\IR^3\longrightarrow\IR^{3\times 3}$ [/mm] mit [mm] $x\longmapsto J_f(x)$ [/mm]
Nun benötige ich allerdings die 2. Ableitung von $f$. Wie bestimme ich diese nochmal und wie lässt sie sich als Abbildung auffassen?

Danke und Gruß

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Fr 26.06.2009
Autor: pelzig

Sind E,F Banachräume, [mm] U\subset [/mm] E offen und [mm]x\in U[/mm], so heißt [mm]f:E\to F[/mm] in x differenzierbar, wenn es eine stetige lineare Abbildung [mm]A_x:E\to F[/mm] gibt mit [mm] $$f(x+h)=f(x)+A_x(h)+o(\|h\|)$$ [/mm] In diesem Falle ist [mm] A_x [/mm] eindeutig bestimmt und falls [mm] E=\IR^m, F=\IR^n, [/mm] so ist die Darstellungsmatrix von [mm] A_x [/mm] bezüglich der Standartbasen genau die Jacobimatrix im Punkt x. Ist f für jedes [mm]x\in U[/mm] differenzierbar, so heißt f differenzierbar und die Abbildung [mm]df: U\ni x\mapsto A_x\in\mathcal{L}(E,F)[/mm] heißt Ableitung von f.

Dabei bezeichnet [mm] $\mathcal{L}(E,F)$ [/mm] den Raum der (stetigen) linearen Abbildungen von E nach F und ist ein Banachraum, d.h. obige Definition der Differenzierbarkeit lässt sich auch auf df anwenden: ist auch df differenzierbar, so ist dies die zweite Ableitung von f, d.h. [mm] $$f''=d(df):U\to\mathcal{L}(E,\mathcal{L}(E,F))$$ [/mm] Im Klartext: Die zweite Ableitung ordnet Punkten aus U eine Lineare Abbildung von E in den Raum der linearen Abbildungen von E nach F zu!

Man kann nun [mm] $\mathcal{L}(E,\mathcal{L}(E,F))$ [/mm] kanonisch mit [mm]\mathcal{L}(E\times E, F)[/mm] identifizieren durch die Abbildung [mm] $$\Phi:\mathcal{L}(E,\mathcal{L}(E,F))\to \mathcal{L}(E\times E,F)),\qquad (\Phi(\alpha))(x,y):=(\alpha(x))(y)$$ [/mm] und damit wird [mm] $$f'':E\to\mathcal{L}(E\times [/mm] E,F)$$ eine Abbildung, die jedem Punkt aus U eine bilineare Abbildung von E nach F zuordnet. Wenn man das so weiter macht erhält man, dass die n-te Ableitung von f, sofern existent, jedem Punkt [mm] x\in U\subset [/mm] E eine n-multilineare Abbildung [mm] $f^{(n)}(x)\in\mathcal{L}(E^n,F)$ [/mm] zuordnet. D.h. im Klartext: Die n-te Ableitung in einem Punkt antwortet auf ein Tupel von n Vektoren aus E durch einen Vektor aus F.

Höhere Ableitungen lassen sich im Allgemeinen (d.h. dim F>1 oder n>2) nicht mehr (in natürlicher Weise) durch Matrizen darstellen, sondern sind dann Tensoren höherer Ordnung, die bezüglich der Standartbasen als Koordinatenfunktion die partiellen Ableitungen höherer Ordnung haben... das ist also das, was du benutzen musst.

Gruß, Robert

Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Fr 26.06.2009
Autor: Denny22

Ich danke Dir einstweilen. Mal schauen, ob mir das weiterhilft

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de