www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abelsche Gruppen, Körper
Abelsche Gruppen, Körper < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abelsche Gruppen, Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 So 29.04.2007
Autor: philipp.koelgen

Aufgabe
Aufgabe 1

Die Abbildung m:  [mm] \IZ \times \IZ \to \IZ [/mm] sei gegeben durch m(x,y)= x+y+1 .
Zeigen Sie, dass ( [mm] \IZ, [/mm] m) eine abelsche Gruppe ist


Aufgabe 2

Definieren Sie auf der Menge [mm] \IF_{4} [/mm] = [mm] \{ 0,1,x,y \} [/mm] eine Addition und eine Multiplikation, so dass [mm] \IF_{4} [/mm] zu einem Körper wird.
Folgenden Tipp haben wir bekommen: Setzen Sie 1+1=0 und x [mm] \times [/mm] y=1 fest.

Hallo miteinander,

kann mir vielleicht jemand von Euch helfen, wie ich bei diesen beiden Aufgaben vorgehen muss? Leider habe ich überhapt keine Idee.

Vielen Dank!

Gruß Philipp

        
Bezug
Abelsche Gruppen, Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 29.04.2007
Autor: angela.h.b.


> Aufgabe 1
>  
> Die Abbildung m:  [mm]\IZ \times \IZ \to \IZ[/mm] sei gegeben durch
> m(x,y)= x+y+1 .
>  Zeigen Sie, dass ( [mm]\IZ,[/mm] m) eine abelsche Gruppe ist


> kann mir vielleicht jemand von Euch helfen, wie ich bei
> diesen beiden Aufgaben vorgehen muss? Leider habe ich
> überhapt keine Idee.

Hallo,

weißt Du denn was eine Gruppe ist?

Welche Gesetze müssen da gelten?

Wenn Du das herausgefunden hast, mußt Du die Gültigkeit dieser Gesetze für die vorgegebene Verknüpfung nachweisen.

Gruß v. Angela

Bezug
                
Bezug
Abelsche Gruppen, Körper: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 18:36 So 29.04.2007
Autor: Manuel24


>  
> Wenn Du das herausgefunden hast, mußt Du die Gültigkeit
> dieser Gesetze für die vorgegebene Verknüpfung nachweisen.
>  

Dabei kannst du dich teilweise darauf beziehen, dass (Z,+) eine Gruppe ist


Bezug
                
Bezug
Abelsche Gruppen, Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 So 29.04.2007
Autor: philipp.koelgen

Eine Menge G zusammen mit einer Verknüpfung [mm] \times [/mm] heißt Gruppe.
Folgende Axiome müssen erfüllt sein:

1. (a  [mm] \* [/mm] b)  [mm] \* [/mm] c= a [mm] \* [/mm] ( b  [mm] \* [/mm] c) für alle a,b, c [mm] \in [/mm] G

2. Es gibt ein e [mm] \in [/mm] G mit den folgenden Eigenschaften:

a) e  [mm] \* [/mm] a= a für alle a [mm] \in [/mm] G
b) Zu jedem a [mm] \in [/mm] G gibt es ein a^´ [mm] \in [/mm]  G mit a^ ' [mm] \* [/mm]  a= e

Die Gruppe heißt abelsch, falls außerdem a [mm] \* [/mm] b= b [mm] \* [/mm] a für alle a,b  [mm] \in [/mm] G.

Ich komme nur leider nicht so gut mit den Beweisen klar. Kannst Du es mir vielleicht einmal an einem Beispiel erklären?

Das wäre super nett.

Gruß Philipp

Bezug
                        
Bezug
Abelsche Gruppen, Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 29.04.2007
Autor: schachuzipus

Hallo Philipp,

da fehlt noch etwas Wesentliches, nämlich die Abgeschlossenheit bzgl. der Verknüpfung, dh, mit zwei Elementen $a,b$ ist auch [mm] $a\circ b\in [/mm] G$

Damit fangen wir mal an:

Seien also [mm] $x_1,x_2\in\IZ$ [/mm]

Dann ist [mm] $m(x_1,x_2)=x_1+x_2+1\in\IZ$ [/mm]

Damit ist [mm] \IZ [/mm] abgeschlossen bzgl. der Verknüpfung m

Auf ähnliche Art und Weise musst du dich nun an die Überprüfung der anderen Axiome machen


Gruß

schachuzipus

Bezug
                                
Bezug
Abelsche Gruppen, Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 So 29.04.2007
Autor: philipp.koelgen

Ich verstehe leider immer noch nicht, woran ich an
m(x1,x2)= x1+x2+1 [mm] \in \IZ [/mm] erkenne, dass [mm] \IZ [/mm] abgeschlossen ist bezüglich der Verknüfung m.




Bezug
                                        
Bezug
Abelsche Gruppen, Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 So 29.04.2007
Autor: schachuzipus

Hallo,

das liegt daran, dass [mm] $(\IZ,+)$ [/mm] eine Gruppe ist, d.h. u.a. , dass [mm] $\IZ$ [/mm] bzgl. + abgeschlossen ist, also mit zwei Elementen [mm] $x_1,x_2\in\IZ$ [/mm] ist auch [mm] $x_1+x_2\in\IZ$ [/mm]

Bei deiner Verknüpfung kommt noch ein +1 dazu, das ganze bleibt somit in [mm] \IZ [/mm]

Ok?


Gruß

schachuzipus

Bezug
                                                
Bezug
Abelsche Gruppen, Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 So 29.04.2007
Autor: philipp.koelgen

Ja, vielen Dank für Deine Hilfe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de