www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - 1. Ableitung von Logarihmenfun
1. Ableitung von Logarihmenfun < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung von Logarihmenfun: wo steckt mein Fehler
Status: (Frage) beantwortet Status 
Datum: 07:50 Mo 12.03.2018
Autor: wolfgangmax

Aufgabe
<br>Ich schlage mich mit folgender Aufgabe und der 1. Ableitung herum, vor allem mit dem negativen Exponenten im 2. Summanden:

[mm] f(x)=2,5^x-2,5*2^{-x} [/mm]


<br>Meine Lösung:
f'(x)= [mm] ln(2,5)*2,5^x-2,5*(-1)ln(2)*2^{-x} [/mm]
Wegen des negativen Exponenten im 2.Summanden steht in meiner Lösung (-1)
Über eine Antwort würde ich mich sehr freuen
Wolfgang Worm

        
Bezug
1. Ableitung von Logarihmenfun: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mo 12.03.2018
Autor: fred97


> <br>Ich schlage mich mit folgender Aufgabe und der 1.
> Ableitung herum, vor allem mit dem negativen Exponenten im
> 2. Summanden:
>  
> [mm]f(x)=2,5^x-2,5*2^{-x}[/mm]
>  
> <br>Meine Lösung:
>  f'(x)= [mm]ln(2,5)*2,5^x-2,5*(-1)ln(2)*2^{-x}[/mm]
>  Wegen des negativen Exponenten im 2.Summanden steht in
> meiner Lösung (-1)
>  Über eine Antwort würde ich mich sehr freuen
>  Wolfgang Worm


Deine Frage verstehe ich nicht. Deine Lösung ist doch richtig !

Bezug
        
Bezug
1. Ableitung von Logarihmenfun: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 12.03.2018
Autor: Diophant

Hallo,

wie FRED schon schrieb, ist deine Ableitung korrekt (man kann sie jedoch noch vereinfachen). [ok]

> Ich schlage mich mit folgender Aufgabe und der 1.
> Ableitung herum, vor allem mit dem negativen Exponenten im
> 2. Summanden:

>

> [mm]f(x)=2,5^x-2,5*2^{-x}[/mm]

>

> Meine Lösung:
> f'(x)= [mm]ln(2,5)*2,5^x-2,5*(-1)ln(2)*2^{-x}[/mm]
> Wegen des negativen Exponenten im 2.Summanden steht in
> meiner Lösung (-1)

Falls deine Frage darauf abzielt, woher der Faktor (-1) kommt: da wurde die Kettenregel angewendet und infolgedessen mit (-x)'=-1 multipliziert.


Gruß, Diophant

Bezug
        
Bezug
1. Ableitung von Logarihmenfun: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mo 12.03.2018
Autor: fred97

Diophant hat Dir ja schon erklärt, wie $-1$ zustande kommt. Das kan man auch noch so sehen:

Es ist [mm] $2^{-x}= (\frac{1}{2})^x.$ [/mm]

Wenn man das differenziert, bekommt man:

[mm] $(\frac{1}{2})^x \ln (\frac{1}{2})=2^{-x}(\ln [/mm] 1- [mm] \ln 2)=2^{-x}(0- \ln [/mm] 2)= - [mm] \ln [/mm] 2 [mm] \cdot 2^{-x}$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de