www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - e hoch A berechnen
e hoch A berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e hoch A berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Fr 09.04.2010
Autor: natascha

Aufgabe
Man berechne e hoch A für folgende Matrix A:
(0 1 .....
..0 1 ...
.........
.......0 1
.........0)

Anmerkung zur Aufgabe: Also im oberen Dreieck hat diese Matrix alles einer, aber auf der Diagonalen alles Nullen.

Ich habe etwas Probleme dabei, diese Aufgabe anzugehen, da sie mir etwas abstrakt vorkommt. Ich weiss, dass man e hoch A grundsätzlich dann gut berechnen kann, wenn A eine Diagonalmatrix ist, eine 2x2 obere Dreickecksmatrix oder eine diagonalisierbare Matrix.
Für diese hier kommt ja allenfalls diagonalisierbarkeit in Frage. Um festzustellen, ob die Matrix diagonalisierbar ist, würde ich die EW bestimmen und dann schauen, ob die EV eine Basis bilden...
Jedoch gestaltet sich das irgendwie schwierig, da diese Matrix ja irgendwie "unendliche" Dimensionen hat..
Gibt es da einen Trick? *hoffnungsvoll-schau* :D

        
Bezug
e hoch A berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:31 Sa 10.04.2010
Autor: angela.h.b.


> Man berechne e hoch A für folgende Matrix A:
>  (0 1 .....
>   ..0 1 ...
>   .........
>   .......0 1
>   .........0)
>  Anmerkung zur Aufgabe: Also im oberen Dreieck hat diese
> Matrix alles einer, aber auf der Diagonalen alles Nullen.
>  
> Ich habe etwas Probleme dabei, diese Aufgabe anzugehen, da
> sie mir etwas abstrakt vorkommt. Ich weiss, dass man e hoch
> A grundsätzlich dann gut berechnen kann, wenn A eine
> Diagonalmatrix ist, eine 2x2 obere Dreickecksmatrix oder
> eine diagonalisierbare Matrix.

Hallo,

dem entnehme ich, daß Du auch weißt, was [mm] e^A [/mm] bedeutet.

>  Für diese hier kommt ja allenfalls diagonalisierbarkeit
> in Frage.

Wieso "allenfalls"? Diagonalisierbarkeit ist die Krönung dessen, was passieren kann!

> Um festzustellen, ob die Matrix diagonalisierbar
> ist, würde ich die EW bestimmen und dann schauen, ob die
> EV eine Basis bilden...
>  Jedoch gestaltet sich das irgendwie schwierig, da diese
> Matrix ja irgendwie "unendliche" Dimensionen hat..
>  Gibt es da einen Trick? *hoffnungsvoll-schau* :D

Nun, das charakteristische Polynom ist schnell auggestellt, [mm] \Chi(x)=x^n, [/mm]
also ist die 0 n-facher Eigenwert

Nun die Bestimmung der Eigenvektoren:  Kern(A-0*E)=Kern A,
A hat den Rang n-1, also muß nach dem Kern-Bild-Satz die Dimension des Eigenraumes =1 sein - zu klein, die Matrix ist nicht diagonalisierbar.


Nun mach mal folgendes: nimm Dir eine 5x5-Matrix A  der obigen Machart und multipliziere sie immer wieder mit sich selbst, berechne  also A, [mm] A^2, [/mm] usw. bis (sagen wir:) [mm] A^{10}. [/mm]

Versuch das noch mit einer weiteren Matrix, an welcher Du Deine Beobachungen bestätigst.

Danach ist die Aufgabe nicht mehr schwer.

Gruß v. Angela



Bezug
                
Bezug
e hoch A berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:36 Sa 10.04.2010
Autor: natascha

Japp, jetzt hat es geklappt, super! Vielen Dank für deine Hilfe!

Bezug
                
Bezug
e hoch A berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Mi 14.04.2010
Autor: neu_ling


> Nun mach mal folgendes: nimm Dir eine 5x5-Matrix A  der
> obigen Machart und multipliziere sie immer wieder mit sich
> selbst, berechne  also A, [mm]A^2,[/mm] usw. bis (sagen wir:)
> [mm]A^{10}.[/mm]
>  
> Versuch das noch mit einer weiteren Matrix, an welcher Du
> Deine Beobachungen bestätigst.
>  
> Danach ist die Aufgabe nicht mehr schwer.
>  
> Gruß v. Angela
>  
>  

Läuft das auf eine endliche Reihe hinaus?
[mm] e^{A} [/mm] = [mm] \summe_{k=0}^{n}A^{n}/k! [/mm]

Bezug
                        
Bezug
e hoch A berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 14.04.2010
Autor: MathePower

Hallo neu_ling,

> > Nun mach mal folgendes: nimm Dir eine 5x5-Matrix A  der
> > obigen Machart und multipliziere sie immer wieder mit sich
> > selbst, berechne  also A, [mm]A^2,[/mm] usw. bis (sagen wir:)
> > [mm]A^{10}.[/mm]
>  >  
> > Versuch das noch mit einer weiteren Matrix, an welcher Du
> > Deine Beobachungen bestätigst.
>  >  
> > Danach ist die Aufgabe nicht mehr schwer.
>  >  
> > Gruß v. Angela
>  >  
> >  

> Läuft das auf eine endliche Reihe hinaus?
>  [mm]e^{A}[/mm] = [mm]\summe_{k=0}^{n}A^{n}/k![/mm]  

Das dient erstmal dazu, daß Du ein System darin erkennst,
wie sich die verschiedenen Potenzen der Matrix  A ergeben.

Danach kannst Du die unendliche Reihe

[mm]e^{A} = \summe_{k=0}^{\infty}A^{n}/k![/mm]  

bilden.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de