www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - trigonometrische fourierreihe
trigonometrische fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trigonometrische fourierreihe: grenzwertbestimmung einer reih
Status: (Frage) beantwortet Status 
Datum: 14:27 So 24.05.2009
Autor: murock

Aufgabe
[mm] f(x)=\begin{cases} 1+x, & \mbox{für } x aus (-\pi,0] \\ 1-x, & \mbox{für } x aus (0,\pi] \end{cases} [/mm]
periodisch forgesetzt

die zahlenreihe:
[mm] \summe_{k=1}^{infty} (\bruch{(-1)^k * (2k+1)}{(4k+1)^2 * (4k+3)^2)} [/mm] = [mm] \bruch{1}{8} \summe_{k=1}^{infty} (-1)^k [/mm] * [mm] (\bruch{1}{(4k+1)^2} [/mm] - [mm] \bruch{1}{(4k+3)^2} [/mm]

1)Bestimmen sie die trigonometrische Fourierreihe von f un deren Punktweise Grenzfunktion
2)berechnen sie den grenzwert der angegebenen zahlenreihe durch einsetzen einer passenden stelle x in die erhaltene fourierreihe

fourier reihe hab ich bereits
ich komm da auf:
[mm] \bruch{2-\pi}{2} [/mm] + [mm] \summe_{n=1}^{infty} \bruch{2*(-1)^n-2}{\pi*n^2}*cos [/mm] nx

die fourierreihe konvergiert ja überall gleichmäßig wo die grenzfkt stetig ist
denk ich muss also die fourierreihe auf eine vernünftige form bringen in der gestalt der gesuchten reihe und dann einfach f bei x auswerten
is mir leider nicht gelungen

wäre für jeden tipp dankbar
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
trigonometrische fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 24.05.2009
Autor: MathePower

Hallo murock,

[willkommenmr]


> [mm]f(x)=\begin{cases} 1+x, & \mbox{für } x aus (-\pi,0] \\ 1-x, & \mbox{für } x aus (0,\pi] \end{cases}[/mm]
>  
> periodisch forgesetzt
>  
> die zahlenreihe:
>  [mm]\summe_{k=1}^{infty} (\bruch{(-1)^k * (2k+1)}{(4k+1)^2 * (4k+3)^2)}[/mm]
> = [mm]\bruch{1}{8} \summe_{k=1}^{infty} (-1)^k[/mm] *
> [mm](\bruch{1}{(4k+1)^2}[/mm] - [mm]\bruch{1}{(4k+3)^2}[/mm]
>  
> 1)Bestimmen sie die trigonometrische Fourierreihe von f un
> deren Punktweise Grenzfunktion
>  2)berechnen sie den grenzwert der angegebenen zahlenreihe
> durch einsetzen einer passenden stelle x in die erhaltene
> fourierreihe
>  
> fourier reihe hab ich bereits
>  ich komm da auf:
>  [mm]\bruch{2-\pi}{2}[/mm] + [mm]\summe_{n=1}^{infty} \bruch{2*(-1)^n-2}{\pi*n^2}*cos[/mm]
> nx


Das hab ich jetzt nicht nachgerechnet.


>  
> die fourierreihe konvergiert ja überall gleichmäßig wo die
> grenzfkt stetig ist
>  denk ich muss also die fourierreihe auf eine vernünftige
> form bringen in der gestalt der gesuchten reihe und dann
> einfach f bei x auswerten
>  is mir leider nicht gelungen


Schau Dir die Fourierreihe etwas genauer an.

Diese hat nur ungerade Koeffizienten.


>  
> wäre für jeden tipp dankbar
>  lg
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de