www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - symmetrische Gruppe
symmetrische Gruppe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrische Gruppe: alternierende Gruppe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:04 Do 05.01.2012
Autor: fe11x

Aufgabe
a) bestimme die Anzahl der Elemente der Alterniereden Gruppe An.
b) Beweise: die Signumfunktion sgn: Sn [mm] \to [/mm] {1, -1} ist genau dann surjektiv wenn n [mm] \ge [/mm] 2.
b) Beweise: die Alternierende Gruppe An ist genau dann kommutativ, wenn n [mm] \le [/mm] 3.
Hinweis: Beachte in (a) die Sonderfälle n=0, n=1.



kann mir hier jemand weiterhelfen.
a) ist glaub ich nicht so schwer. wenn ich S4 hab, dann hab ich 24 Permutationen, dh die alternierende Gruppe hat 12 oder?

b) ist das so gemeint, das ich wenn ich n größer gleich 2 hab, immer mindestens eine gerade und eine ungerade permuatation hab, daher surjektiv?

c) hier versteh ich nicht, was gemein ist.

danke im voraus
fe11x

        
Bezug
symmetrische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 05.01.2012
Autor: hippias


> a) bestimme die Anzahl der Elemente der Alterniereden
> Gruppe An.
>  b) Beweise: die Signumfunktion sgn: Sn [mm]\to[/mm] {1, -1} ist
> genau dann surjektiv wenn n [mm]\ge[/mm] 2.
>  b) Beweise: die Alternierende Gruppe An ist genau dann
> kommutativ, wenn n [mm]\le[/mm] 3.
>  Hinweis: Beachte in (a) die Sonderfälle n=0, n=1.
>  
> kann mir hier jemand weiterhelfen.
>  a) ist glaub ich nicht so schwer. wenn ich S4 hab, dann
> hab ich 24 Permutationen, dh die alternierende Gruppe hat
> 12 oder?

Richtig.

>  
> b) ist das so gemeint, das ich wenn ich n größer gleich 2
> hab, immer mindestens eine gerade und eine ungerade
> permuatation hab, daher surjektiv?

Richtig.

>  
> c) hier versteh ich nicht, was gemein ist.
>  
> danke im voraus
>  fe11x

Was genau verstehst Du nicht?

Bezug
                
Bezug
symmetrische Gruppe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:56 Do 05.01.2012
Autor: fe11x

gut.
a) hab ich geschafft, war nicht so schwer :)
b) wie kann man das gut formulieren?
c) ich weiß einfach nicht was ich hier mit der kommutativität machen soll.

Bezug
                
Bezug
symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 05.01.2012
Autor: fe11x

mittlerweile hab ich auch b geschafft.
aber ich verstehe einfach nicht, wie ich in "c" die kommutativität zeigen soll.
klar weiß ich, das a*b=b*a gelten muss.
aber wieso nur für n >4? bzw wie kann ich sowas zeigen?
bitte um hilfe!

Bezug
                        
Bezug
symmetrische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Do 05.01.2012
Autor: hippias


> mittlerweile hab ich auch b geschafft.
>  aber ich verstehe einfach nicht, wie ich in "c" die
> kommutativität zeigen soll.
>  klar weiß ich, das a*b=b*a gelten muss.
>  aber wieso nur für n >4? bzw wie kann ich sowas zeigen?
>  bitte um hilfe!

Also die Kommutativitaet soll gelten fuer [mm] $n\leq [/mm] 3$. Dazu wuerde ich mir zuerst die Ordnung und Struktur der [mm] $A_{n}$ [/mm] fuer diese Faelle ueberlegen; daraus sollte sich die Behauptung ergeben.
Um zu zeigen, dass die [mm] $A_{n}$ [/mm] in den anderen Faellen nicht kommutativ ist, genuegt es sich irgend zwei Elemente [mm] $a,b\in A_{n}$ [/mm] zu ueberlegen, die die Gleichung $ab= ba$ nicht erfuellen. Ich wuerde sogar schaetzen, dass die Wahrscheinlichkeit, dass zwei willkuerlich gewaehlte Elemente vertauschbar sind, eher klein ist. Falls die Darstellung der Permutationen Schwierigkeiten bereitet, kannst Du sie in Zykelschreibweise o.ae. notieren.


Bezug
                                
Bezug
symmetrische Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Do 05.01.2012
Autor: fe11x

hmm ja, genau da liegt mein problem.
ich kann mir eine alternierende gruppe gar nicht aufschreiben.

zb bei S3 hat man folgende permutationen: id, (123), (132), (12), (13), (23).

die geraden permuationen wären hier: id, (123), (132). dh. das wären die elemente der alternierenden gruppe A3.

gut. aber weiter weiß ich nicht mehr.
ich weiß nicht wie ich hier überhaupt ansetzen soll mit dem kommutativgesetz.
könntest du mir da weiterhelfen?

Bezug
                                        
Bezug
symmetrische Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 Do 05.01.2012
Autor: hippias

Nenne mir einmal irgend zwei Elemente der [mm] $A_{4}$ [/mm] und ueberpruefe, ob sie vertauschabr sind (da wir nicht Nichtkommutativitaet wuenschen, scheidet $1$ schon einmal aus).

Bezug
                                                
Bezug
symmetrische Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Do 05.01.2012
Autor: fe11x

ja aber was soll ich denn vertauschen?
soll ich 2 permuatationen hernehmen, die sich genau in einer transposition unterscheiden. dann multipliziere ich sie und sehe das ergebnis?


Bezug
                                                        
Bezug
symmetrische Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Fr 06.01.2012
Autor: hippias

Ja. Falls bei Deiner Wahl fuer die Permutationen $ab= ba$ sein sollte, werde ich Dir weiterhelfen; wenn nicht bist Du fertig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de