www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - risikoneutrales Maß
risikoneutrales Maß < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

risikoneutrales Maß: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:50 Mo 27.10.2014
Autor: derriemann

Aufgabe
Im einperiodigen Binomialmodell über dem Wahrscheinlichkeitsraum
[mm] (\Omega,\mathcal{F},P)=(\{H,T\},\mathcal{P}(\Omega),P[\{H\}]=P[\{T\}]=\bruch{1}{2}) [/mm]
sei die Wertentwicklung der Aktie durch [mm] S_{0}=100,S_{1}(H)=120 [/mm] sowie [mm] S_{1}(T)=90 [/mm] beschrieben.

Für welche Zinsraten r des Sparbuchs ist das Finanzmarktmodell arbitragefrei?
Bestimmen Sie für diese Zinsraten das zugehörige risikoneutrale Maß [mm] P^{\*} [/mm] durch Berechnung der risikoneutralen Wahrscheinlichkeiten
[mm] p^{\*}:=P^{\*}[\{H\}] [/mm] und [mm] q^{\*}:=P^{\*}[\{T\}]. [/mm]

Hallo,
habe hierzu bis jetzt geschrieben:

Es gilt: arbitragefrei [mm] \gdw [/mm] 0 < d < 1+r < u,
wobei [mm] d=\bruch{S_{1}(T)}{S_{0}}, u=\bruch{S_{1}(H)}{S_{0}} [/mm]
[mm] \Rightarrow [/mm] 0 < 0,9 < 1+r < 1,2
[mm] \Rightarrow [/mm] -0,1 < r < 0,2

[mm] p^{\*}=\bruch{1+r-d}{u-d}=\bruch{r-0,1}{0,3} [/mm]
[mm] q^{\*}=\bruch{u-(1+r)}{u-d}=\bruch{0,2-r}{0,3} [/mm]

Ist das bis hierhin erstmal richtig? Und was besagen mir denn jetzt eigentlich diese risikoneutralen Maße? Würde mich über Antworten freuen :-)



        
Bezug
risikoneutrales Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mo 27.10.2014
Autor: Thomas_Aut


> Im einperiodigen Binomialmodell über dem
> Wahrscheinlichkeitsraum
> [mm](\Omega,\mathcal{F},P)=(\{H,T\},\mathcal{P}(\Omega),P[\{H\}]=P[\{T\}]=\bruch{1}{2})[/mm]
>  sei die Wertentwicklung der Aktie durch
> [mm]S_{0}=100,S_{1}(H)=120[/mm] sowie [mm]S_{1}(T)=90[/mm] beschrieben.
>  
> Für welche Zinsraten r des Sparbuchs ist das
> Finanzmarktmodell arbitragefrei?
> Bestimmen Sie für diese Zinsraten das zugehörige
> risikoneutrale Maß [mm]P^{\*}[/mm] durch Berechnung der
> risikoneutralen Wahrscheinlichkeiten
> [mm]p^{\*}:=P^{\*}[\{H\}][/mm] und [mm]q^{\*}:=P^{\*}[\{T\}].[/mm]
>  Hallo,
>  habe hierzu bis jetzt geschrieben:
>  
> Es gilt: arbitragefrei [mm]\gdw[/mm] 0 < d < 1+r < u,
>  wobei [mm]d=\bruch{S_{1}(T)}{S_{0}}, u=\bruch{S_{1}(H)}{S_{0}}[/mm]
>  
> [mm]\Rightarrow[/mm] 0 < 0,9 < 1+r < 1,2
>  [mm]\Rightarrow[/mm] -0,1 < r < 0,2

Das stimmt.

>  
> [mm]p^{\*}=\bruch{1+r-d}{u-d}=\bruch{r-0,1}{0,3}[/mm]
>  [mm]q^{\*}=\bruch{u-(1+r)}{u-d}=\bruch{0,2-r}{0,3}[/mm]
>  
> Ist das bis hierhin erstmal richtig? Und was besagen mir
> denn jetzt eigentlich diese risikoneutralen Maße? Würde
> mich über Antworten freuen :-)
>  
>  

Bevor wir uns dran machen sollten risikoneutrale Maße auszurechnen ( um beispielsweise die Vollständigkeit eines Marktes nachzuweisen oder die 'no-arbitrage-Bedingung') sollten wir mal genau wissen was das ist.

Ein Wahrscheinlichkeitsmaß [mm] \mathbb{P} [/mm] auf [mm] \Omega [/mm] heißt risikoneutrales Maß oder auch Martingalmaß falls:

1) [mm] \mathbb{P}(\omega) [/mm] > 0 [mm] \forall \omega \in \Omega [/mm]
2) Martingaleigenschaft - ich schreibs für dich jz mal beispielhaft hin - es soll also : [mm] \mathbb{E}_{\mathbb{P}}(S_{1}) [/mm] = [mm] S_{0} [/mm]

Bemerkung: Es existiert keine Arbitragemöglichkeit dann und nur dann, wenn ein risikoneutrales Maß existiert.

Gruß Thomas

Bezug
                
Bezug
risikoneutrales Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 29.10.2014
Autor: derriemann

Ok, aber mir wäre jetzt gar nicht klar, wie hier [mm] E_{\IP}(S_{1})=S_{0} [/mm] mit dem Zinssatz r und den [mm] p^{\*},q^{\*} [/mm] aufgedröselt werden könnte...

Bezug
                        
Bezug
risikoneutrales Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 29.10.2014
Autor: Thomas_Aut


> Ok, aber mir wäre jetzt gar nicht klar, wie hier
> [mm]E_{\IP}(S_{1})=S_{0}[/mm] mit dem Zinssatz r und den
> [mm]p^{\*},q^{\*}[/mm] aufgedröselt werden könnte...

Was meinst du damit?

Lies meine letzte Antwort nochmals genau und bestimme dann zwei Gleichungen - die erste lautet:

1) Da wir ja ein Wahrscheinlichkeitsmaß suchen muss wohl

I : [mm] p_{1}^{\*} [/mm] + [mm] p_{2}^{\*} [/mm] = 1

gelten.

Für die zweite Gleichung nutze nun die Martingaleigenschaft.

Ps: statt p,q - habe ich [mm] p_{1},p_{2} [/mm] gewählt.


Gruß Thomas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de