www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - momenterzeugende Funktion
momenterzeugende Funktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

momenterzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 24.10.2018
Autor: questionpeter

Aufgabe
Sei X eine reellwertige Zufallsvariable mit [mm] X\in\mathcal{L}^k [/mm] für alle $k$ und mit
[mm] r=\big(\limes_{k\rightarrow\infty}sup\wurzel[k]{\bruch{\vert E(X^k)\vert}{k!}}\big)^{-1}>0 [/mm]

Ausserdem sei [mm] \kappa_k(X)=(log M_{X}(z)^{(k)})|_{z=0} [/mm] für [mm] k\in\IN, [/mm] wobei
[mm] M_x(z)=E(e^{zX}) [/mm] momenterzeugende Funktion.

(a) Bestimme [mm] \kappa_1(X), \kappa_2(X) [/mm] und [mm] \kappa_3(X) [/mm] in Abhängigkeit der Momente von X.

(b) Zeige, dass [mm] \kappa_1(X+c) =\kappa_1(X)+c [/mm] und [mm] \kappa_k(X+c)=\kappa_k(X) [/mm] für alle [mm] k\ge [/mm] 2 und [mm] c\in\IR [/mm] gilt.

(c) Zeige weiter, [mm] \kappa_k(cX)=c^k\kappa_k(X) [/mm] für alle [mm] k\le [/mm] 1 und alle [mm] c\in\IR [/mm] gilt.
(d) Sind X,Y unabhängig, dann gilt [mm] \kappa_k(X+Y)=\kappa_k(X)+\kappa_k(Y) [/mm] für alle [mm] k\ge [/mm] 1

Hallo,

(a) Ich habe gelesen dass gilt
[mm] \kappa_k(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^k). [/mm]
also muss für k=1: [mm] \kappa_1(X)=E(X) [/mm] Erwartungswert
[mm] \kappa_1(X)=(log M_{X}(z)^{(1)})|_{z=0} [/mm]

erstmals habe ich log [mm] M_{X}(z) [/mm] abgeleitet, d.h. (log [mm] M_{X}(z))'=\bruch{1}{ M_{X}(z)}(M_{X}(z))'=\bruch{1}{ M_{X}(z)}E(Xe^{zX})\overset{z=0}{=}E(X) [/mm]

Intuitiv würde ich nun sagen, dass [mm] \kappa_2(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^2) [/mm] und [mm] \kappa_3(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^3). [/mm]

aber für k=2 erhalte ich:
[mm] (\bruch{1}{ M_{X}(z)}E(Xe^{zX}))'\overset{produktregel}{=}\bruch{-1}{ M_{X}(z)}^2E(X^e^{zX})+\bruch{1}{ M_{X}(z)}E(X^2e^{zX})\overset{z=0}{=}E(X^2)-E(X) [/mm]

für k=3 : [mm] \kappa_3(X)= E(X^3)-2E(X^2)+2E(X) [/mm]

stimmt das soweit?

(b) [mm] \kappa_1(X+c)=E(X+c)\overset{EW linear}{=}E(X)+c=\kappa_1(X)+c [/mm]

nun habe es für erstmals für k=2 nachgeprüft: Wenn ich es ausgehe [mm] \kappa_2(X)=E(X^2), [/mm] dann  erhalte ich [mm] \kappa_2(X+c)=E((X+c)^2)=E(X^2)+2cE(X)+c^2, [/mm]  aber wie komme ich von dort zu [mm] \kappa_2(X)? [/mm]
Kann mir da jemand weiterhelfen?
(c) [mm] \kappa_k(cX)=E((cX)^k)=E(c^kX^k)c^kE(X^k)=c^kE(X^k) [/mm]

(d) ich habe es mit der Verwendung des  Binomischen Lehrsatzes versucht, aber kam zu keinem Ergebnis.

Kann mir da jemand weiterhelfen?

        
Bezug
momenterzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 24.10.2018
Autor: Gonozal_IX

Hiho,

> (a) Ich habe gelesen dass gilt
> [mm]\kappa_k(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^k).[/mm]

das Buch zeig mir mal!
Es gilt [mm] $M_{X}(z)^{(k)}\big|_{z=0}=E(X^k)$, [/mm] also ohne [mm] $\log$ [/mm] davor.
Das ist die namensgebende Eigenschaft der Momenterzeugenden Funktion $M$.
Die Eigenschaft hattet ihr bestimmt auch… und demzufolge kann diese Eigenschaft nicht auch für [mm] $\kappa$ [/mm] gelten…

> erstmals habe ich log [mm]M_{X}(z)[/mm] abgeleitet

Gute Idee…

> d.h. (log [mm]M_{X}(z))'=\bruch{1}{ M_{X}(z)}(M_{X}(z))'=\bruch{1}{ M_{X}(z)}E(Xe^{zX})\overset{z=0}{=}E(X)[/mm]

Halten wir erst mal fest: Es gilt:
[mm] $\kappa_1(X)\big|_{z=0} [/mm] = [mm] \bruch{M'_X(z)}{ M_{X}(z)}\big|_{z=0} [/mm] = [mm] \frac{E[X]}{1} [/mm] = E[X]$

Das $M'_X(z) = [mm] E[Xe^{zX}]$ [/mm] gilt, ist alles andere als trivial und wurde von dir auch nicht begründet. Du vertauschst da nämlich Ableitung und Erwartungswert, warum sollte das möglich sein? Links steht nämlich [mm] $\frac{d}{dz}M_X(z) [/mm] = [mm] \frac{d}{dz}E[e^{zX}]$ [/mm] und rechts steht [mm] $E[Xe^{zX}] [/mm] = [mm] E\left[\frac{d}{dz}e^{zX}\right]$. [/mm] Warum solltest du den Operator [mm] $\frac{d}{dz}$ [/mm] in den Erwartungswert ziehen können?

> Intuitiv würde ich nun sagen, dass [mm]\kappa_2(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^2)[/mm]
> und [mm]\kappa_3(X)=(log M_{X}(z)^{(k)})|_{z=0}=E(X^3).[/mm]

Woher kommt deine Intuition?
Ich vermute ja, du verwechselst [mm] \kappa [/mm] und [mm] M_X [/mm]

> aber für k=2 erhalte ich:
>  [mm](\bruch{1}{ M_{X}(z)}E(Xe^{zX}))'\overset{produktregel}{=}\bruch{-1}{ M_{X}(z)}^2E(X^e^{zX})+\bruch{1}{ M_{X}(z)}E(X^2e^{zX})\overset{z=0}{=}E(X^2)-E(X)[/mm]

Wieder: Schreibe lieber nur $M'_X$ und verwende die Eigenschaften der Momenterzeugenden Funktion.
Dann erhälst du: [mm] $\left(\frac{M'_X(z)}{M_X(z)}\right)' [/mm] = [mm] \frac{M''_X(z)M_X(z) - \left(M'_X(z)\right)^2}{M^2_X(z)}$ [/mm] und dann erhälst du für $z=0$ was?
Nicht deine Lösung… und wenn du die Lösung dann noch scharf anschaust, erkennst du womöglich, wie man das sonst nennt.


> (b) [mm]\kappa_1(X+c)=E(X+c)\overset{EW linear}{=}E(X)+c=\kappa_1(X)+c[/mm]

du unterschlägst hier schon wieder das [mm] $\log$ [/mm] im [mm] $\kappa$ [/mm]

>  (c) [mm]\kappa_k(cX)=E((cX)^k)=E(c^kX^k)c^kE(X^k)=c^kE(X^k)[/mm]

Hier auch…
  

> (d) ich habe es mit der Verwendung des  Binomischen
> Lehrsatzes versucht, aber kam zu keinem Ergebnis.

Viel einfacher: Was gilt für die momenterzeugende Funktioen einer Summe von unabhängigen Zufallsvariablen?
Also was ist [mm] M_{X+Y} [/mm] in Abhängigkeit von [mm] M_X [/mm] und [mm] $M_Y$? [/mm] Nutze dann Logarithmusgesetze…

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de