www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - kleine Frage zum integrieren
kleine Frage zum integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleine Frage zum integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 13.04.2009
Autor: eva-marie230

Abend,

Eine kurze Frage:Wenn  eine Fkt.zb. für p=1 [mm] ,|f|^1 [/mm] integrierbar ist,ist sie dann auch automatisch zb für p=2 integrierbar?

LG

        
Bezug
kleine Frage zum integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 13.04.2009
Autor: XPatrickX


> Abend,

Hallo!

>  
> Eine kurze Frage:Wenn  eine Fkt.zb. für p=1 [mm],|f|^1[/mm]
> integrierbar ist,ist sie dann auch automatisch zb für p=2
> integrierbar?

Nein, betrachte [mm] f(x)=\frac{1}{\wurzel{x}} [/mm] auf M=(0,1].

Dann ist [mm] $\int_M [/mm] |f| dx = [mm] 2\wurzel{x} \; |_{x=0}^{x=1} [/mm] = 2 < [mm] \infty$ [/mm]

Aber [mm] $\int_M |f|^2 [/mm] dx = [mm] \int_0^1 \frac{1}{x} [/mm] dx = [mm] ln(x)\; |_{x=0}^{x=1} [/mm] = [mm] \infty$ [/mm]


Gruß
Patrick

>  
> LG

Bezug
                
Bezug
kleine Frage zum integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mo 13.04.2009
Autor: eva-marie230

Hallo

Stimmt,eigentlich eine dumme Frage^^.Ich hab noch so eine;),dass : [mm] L^1([0,1]) \subset L^2([0,1]) [/mm] gilt doch nicht oder?Nur umgekehrt?

LG

Bezug
                        
Bezug
kleine Frage zum integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Di 14.04.2009
Autor: Marcel

Hallo,

> Hallo
>
> Stimmt,eigentlich eine dumme Frage^^.Ich hab noch so
> eine;),dass : [mm]L^1([0,1]) \subset L^2([0,1])[/mm] gilt doch nicht
> oder?

nein, Patrick hat doch insbesondere eine [mm] $L^1([0,1])$-Funktion [/mm] angegeben, die nicht in [mm] $L^2([0,1])$ [/mm] liegt (setze einfach für [mm] $x_0=0$ [/mm] dann [mm] $f(x_0)=f(0):=0\,,$ [/mm] das ist eh für das Integral dann uninteressant, da [mm] $\{x_0\}$ [/mm] eine Lebesguesche Nullmenge ist).
(Würde [mm] $L^1([0,1]) \subset L^2([0,1])$ [/mm] gelten, so müßte die Funktion $f: [0,1] [mm] \to \IR$ [/mm] mit $x [mm] \mapsto f(x):=\frac{1}{\sqrt{x}}$ [/mm] ($x [mm] \in [/mm] (0,1]$) und [mm] $f(0):=0\,$ [/mm] auch $f [mm] \in L^2([0,1])$ [/mm] erfüllen, was sie aber nicht tut!)

> Nur umgekehrt?

Ja, das gilt sogar allgemeiner:
Ist [mm] $(\Omega,\sigma,\mu)$ [/mm] ein endlicher []Maßraum, so gilt [mm] $L^q (\Omega, \sigma, \mu; [/mm] E) [mm] \subset L^p (\Omega, \sigma, \mu; [/mm] E)$ für $1 [mm] \le [/mm] p [mm] \le [/mm] q [mm] \le \infty$ [/mm] (vgl. []Wiki, Lp-Raum); und das Lebesguemaß auf [mm] $\Omega=[0,1]$ [/mm] ist ein endliches Maß.

Der Beweis ist für $1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty$ [/mm] auch nicht schwer:
Denn etwa nach der []Hölder-Ungleichung  gilt für $f [mm] \in L^q (\Omega, \sigma, \mu; [/mm] E)$, wenn $1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty$ [/mm] ist:

Zunächst ist klar, dass [mm] $\exists [/mm] a [mm] \ge [/mm] 0$ mit [mm] $\frac{p}{q}+a=1\,,$ [/mm] d.h. [mm] $a=1-\frac{p}{q}=\frac{q-p}{q} \ge 0\,.$ [/mm] Ich beschränke mich auf den Fall, den Beweis für $a > 0$ zu führen:
Wir setzen [mm] $r:=\frac{1}{\frac{p}{q}}=\frac{q}{p}$ [/mm] und [mm] $s:=\frac{1}{a}=\frac{q}{q-p}\,.$ [/mm]

Dann gilt nach Hölder mit [mm] $I_\Omega=1$ [/mm] (d.h. [mm] $I_\Omega(x):=1$ [/mm] für alle $x [mm] \in \Omega$, [/mm] insbesondere also [mm] $|I_\Omega|=1=I_\Omega$): [/mm]
[mm] $$\|f\|_p^p=\int_\Omega |f(x)|^p\;d\mu(x)=\int_\Omega |f(x)|^p I_\Omega(x)\;d\mu(x)=\|\;|f|^p\,*\,I_\Omega\;\|_1 \le \|\,|f|^p\,\|_r\;*\;\|I_\Omega\|_s\,.$$ [/mm]

Weiter ist (ich schreibe nun kurz [mm] $\int |f|^p$ [/mm] anstatt [mm] $\int_\Omega |f(x)|^p\,d\mu(x)$ [/mm] etc.) wegen $f [mm] \in L^q (\Omega, \sigma, \mu; [/mm] E)$ hier
[mm] $$\|\,|f|^p\,\|_r=\Big(\int |f|^{pr}\Big)^{1/r}=\left(\Big(\int |f|^q\Big)^{1/q}\right)^p=\|f\|_q^{\;p} [/mm] < [mm] \infty\,,$$ [/mm]
und außerdem ergibt sich
[mm] $$\|I_\Omega\|_s=\Big(\int 1^s\Big)^{1/s} \le \big(\mu(\Omega)\big)^{1/s}=\big(\mu(\Omega)\big)^{\frac{q-p}{q}}\,.$$ [/mm]

Also
[mm] $$\|f\|_p^p \le \underbrace{\|f\|_q^{\;p}}_{\substack{< \infty\\\text{wegen }f \in L^q}}\;*\;\underbrace{\big(\mu(\Omega)\big)^{\frac{q-p}{q}}}_{\substack{< \infty\\\text{da }\mu(\Omega) < \infty}}< \infty\,,$$ [/mm]
und damit $f [mm] \in L^q(\Omega,\sigma,\mu; [/mm] E)$ erkannt.

Insbesondere läßt sich hieraus sofort die Beziehung
[mm] $$\frac{\|f\|_p}{\Big(\mu(\Omega)\Big)^{1/p}} \le \frac{\|f\|_q}{\Big(\mu(\Omega)\Big)^{1/q}}$$ [/mm]
ablesen (durch Anwendung der [mm] $\,p$-ten [/mm] Wurzel).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de