www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - hermitisch : reelle Eigenwerte
hermitisch : reelle Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hermitisch : reelle Eigenwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 21:18 Do 25.08.2005
Autor: Scale

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Ich möchte zeigen das jede hermitische Matrix nur reelle Eigenwerte hat:

Mein Ansatz: Das folgt direkt aus  [mm] \overline{a_{ji}}=a_{ij} [/mm] für die Nebendiagonalen, da bei der Bestimmung des char. Polynoms immer [mm] (a+ib)(a-ib)=a^2+b^2 [/mm] =:reell gilt; Und für die Hauptdiagonale gilt [mm] \overline{a_{ii}}=a_{ii}, [/mm] was nur möglich ist wenn alle [mm] a_{ii} [/mm] reell sind.

Kann man das so knapp formulieren?

Vielen Dank schonmal, mfg, Scale.

        
Bezug
hermitisch : reelle Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Do 25.08.2005
Autor: Hanno

Hallo Scale!

Ich kann deine Argumentation leider nicht nachvollziehen. Wie mir scheint, versuchst du zu zeigen, dass die Koeffizienten des charakteristischen Polynomes aus [mm] $\IC[x]$ [/mm] reell sind, oder? Selbst wenn dem so ist, was ich im Augenblick weder zeigen noch widerlegen kann, ist damit noch nicht gezeigt, dass das Polynom nur reelle Nullstellen hat - schließlich iust [mm] $\IR$ [/mm] ja nicht algebraisch abgeschlossen, das reelle charakteristische Polynom kann also durchaus komplexe Nullstellen besitzen.

Eine einfache Lösung der Aufgabe lässt sich mit Hilfe selbstadjungierter, linearer Abbildungen finden. Sei $V$ ein unitärer Vektorraum mit Skalarprodukt [mm] $\langle [/mm] , [mm] \rangle$, [/mm] dann ist [mm] $f:V\to [/mm] V$ selbstadjungiert, wenn [mm] $\langle f(v),w\rangle [/mm] = [mm] \langle v,f(w)\rangle$ [/mm] für alle [mm] $v,w\in [/mm] V$ gilt. Es zeigt sich, dass eine lineare Abbildung $f$ genau dann selbstadjungiert ist, wenn ihre Darstellungsmatrix bzgl. einer Orthonormalbasis hermitesch ist. Fasst du also die dir gegebene hermitesche Matrix als Darstellungsmatrix einer selbstadjungierten, linearen Abbildung $f$ auf und sei [mm] $\lambda\in\IC$ [/mm] Eigenwert zum Eigenvektor [mm] $v\not= 0\in [/mm] V$, dann gilt (da $f$ selbstadjungiert ist): [mm] $\lambda \langle v,v\rangle [/mm] = [mm] \langle \lambda v,v\rangle [/mm] = [mm] \langle f(v),v\rangle [/mm] = [mm] \langle v,f(v)\rangle [/mm] = [mm] \langle v,\lambda v\rangle [/mm] = [mm] \overline{\lambda}\langle v,v\rangle$. [/mm] Da [mm] $\langel [/mm] , [mm] \rangle$ [/mm] ein Skalarprodukt, insbesondere also positiv definit und [mm] $v\not= [/mm] 0$ ist, folgt nach linksseitiger Multiplikation mit [mm] $\langle v,v\rangle^{-1}$, [/mm] dass [mm] $\lambda=\overline{\lambda}$ [/mm] gilt, was äquivalent zu [mm] $\lambda\in\IR$ [/mm] ist.


Liebe Grüße,
Hanno

Bezug
                
Bezug
hermitisch : reelle Eigenwerte: verstanden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Do 25.08.2005
Autor: Scale

Moin, Hanno,

Danke für die Antwort. Ist mir jetzt glasklar. (Gut das ich nochmal gefragt habe, hab wirklich die Koeffizienten mit den Nullstellen verwurstelt. )

mfg, Scale

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de