www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Äquivalenz
Äquivalenz < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:24 Mo 28.12.2015
Autor: natural

Hallo,
im Rahmen einer Seminararbeit arbeite ich im Moment einen Beweis auf, bei dem ich einen Schritt nicht nachvollziehen kann.
Der Autor notiert:

[mm] \integral_{0}^{1}{v'(x)^{2} dx} [/mm] = [mm] \bruch{1}{2} \integral_{0}^{1}{((v'(x)^{2} dx + \bruch{1}{2} v'(x)^{2}) dx} [/mm]

wobei v(x) eine Funktion aus einem Hilbert Raum [mm] {H^{1}} [/mm] mit Nullrandbedingungen also v(0)=v(1)=0 ist.

Vor allem stört mich das dx innerhalb des Integrals auf der rechten Seite. Wie hat man das zu deuten?
Jemand einen Vorschlag zu dieser Formulierung?

mfG
natural

        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Di 29.12.2015
Autor: leduart

Hallo
ob man zu jedem einzelnen Summanden im Integral ein dx schreibt, oder 2 Integrale schreibt, oder die Summanden in Klammern und ein dx dahinter ist alles dasselbe
Gruß leduart

Bezug
        
Bezug
Äquivalenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mi 30.12.2015
Autor: chrisno

Die rot markierte Klammer
[mm]\integral_{0}^{1}{v'(x)^{2} dx}[/mm] = [mm]\bruch{1}{2} \integral_{0}^{1}{\red{(}(v'(x)^{2} dx + \bruch{1}{2} v'(x)^{2}\red{)} dx}[/mm]
irritiert mich. Ich halte den Ausdruck, so wie er da steht, für fehlerhaft.


Bezug
                
Bezug
Äquivalenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Mi 30.12.2015
Autor: statler


> Die rot markierte Klammer
> [mm]\integral_{0}^{1}{v'(x)^{2} dx}[/mm] = [mm]\bruch{1}{2} \integral_{0}^{1}{\red{(}(v'(x)^{2} dx + \bruch{1}{2} v'(x)^{2}\red{)} dx}[/mm]
>  
> irritiert mich. Ich halte den Ausdruck, so wie er da steht,
> für fehlerhaft.

Hallo!
Der Ausdruck ist schon deswegen fehlerhaft, weil 4 Klammern aufgemacht, aber nur 3 zugemacht werden. Aber ich sehe auch sonst keine sinnvolle Interpretation.
Was soll denn bewiesen werden, und wie schreitet der Beweis fort?
Gruß aus HH
Dieter

>  


Bezug
                        
Bezug
Äquivalenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Mi 30.12.2015
Autor: natural

Hallo,
vielen Dank für die Antworten. In der Tat habe ich bei den Klammerausdrücken etwas geschlampt (war wohl schon etwas spät). Hier ist die korrigierte Version:

[mm] \integral_{0}^{1}{v'(x)^{2} dx} [/mm] = [mm] \bruch{1}{2} \integral_{0}^{1}{( (v'(x))^{2}dx + \bruch{1}{2} (v'(x))^{2}) dx} [/mm]

Oder in übersichtlicherer Schreibweise
[mm] ...=\bruch{1}{2} \integral_{0}^{1}{( (v'(x))^{2}dx ) dx} [/mm] + [mm] \bruch{1}{4} \integral_{0}^{1}{(v'(x))^{2} dx} [/mm]

Einen Integralausdruck mit zwei Differentialen habe ich bisher in dieser Form noch nie gesehen und weiß nicht wie man damit umzugehen hat.

Hinweis: Es geht hier um die Anwendung des Lax-Milgram Lemmas, der Aussagen über die Existenz und Eindeutigkeit von Variationsformulierungen ermöglicht.

Screenshot: http://www.directupload.net/file/d/4218/2w6h5iqf_jpg.htm

mfG
natural

Bezug
        
Bezug
Äquivalenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 05.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de