www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Zeige, dass Menge offen ist
Zeige, dass Menge offen ist < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige, dass Menge offen ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Di 26.04.2016
Autor: WinterMensch

Aufgabe
Sei [mm] $\Omega\in\mathbb{R}^n$ [/mm] offen mit [mm] $0\notin\Omega$. [/mm] Dann ist [mm] $\tilde{\Omega}:=\left\{x\in\mathbb{R}^n\setminus\{0\} : \frac{x}{|x|^2}\in \Omega \right\}$ [/mm] ebenfalls offen mit [mm] $0\notin\tilde{\Omega}$. [/mm]

Hallo,
Ich bin mir nicht sicher wie man diese Behauptung zeigen könnte. Denn meiner Meinung nach gibt es da nicht viel zu zeigen.
Ich dachte man könnte mit der Definition argumentieren: Da in [mm] $\tilde{\Omega}$ [/mm] nur die [mm] $x\in\mathbb{R}\setminus\{0\}$ [/mm] enthalten sind für die dieser Ausdruck in [mm] $\Omega$ [/mm] liegt, findet man bereits immer eine Umgebung um diese $x$ da [mm] $\Omega$ [/mm] offen ist.
Ist das zu einfach gedacht?
Und wenn ja, wie würde man hier am besten vorgehen?
Vielen Dank im Vorraus :)

        
Bezug
Zeige, dass Menge offen ist: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Di 26.04.2016
Autor: fred97


> Sei [mm]\Omega\in\mathbb{R}^n[/mm] offen mit [mm]0\notin\Omega[/mm]. Dann ist
> [mm]\tilde{\Omega}:=\left\{x\in\mathbb{R}^n\setminus\{0\} : \frac{x}{|x|^2}\in \Omega \right\}[/mm]
> ebenfalls offen mit [mm]0\notin\tilde{\Omega}[/mm].
>  Hallo,
> Ich bin mir nicht sicher wie man diese Behauptung zeigen
> könnte. Denn meiner Meinung nach gibt es da nicht viel zu
> zeigen.
> Ich dachte man könnte mit der Definition argumentieren: Da
> in [mm]\tilde{\Omega}[/mm] nur die [mm]x\in\mathbb{R}\setminus\{0\}[/mm]
> enthalten sind für die dieser Ausdruck in [mm]\Omega[/mm] liegt,
> findet man bereits immer eine Umgebung um diese [mm]x[/mm] da [mm]\Omega[/mm]
> offen ist.
> Ist das zu einfach gedacht?

Na ja. Wenn Du eine solche Umgebung angeben könntest, wäre das O.K. Kannst Du das ?

Einfacher: definiere [mm] $f:\IR^n \setminus\{0\} \to \IR^n$ [/mm] durch [mm] $f(x):=\bruch{x}{|x|^2}$ [/mm]



Dann ist f stetig.

Welche Menge ist dann [mm] f^{-1}(\Omega) [/mm] ? Und welche Eigenschaft hat sie ?

FRED

>  Und wenn ja, wie würde man hier am besten vorgehen?
>  Vielen Dank im Vorraus :)


Bezug
                
Bezug
Zeige, dass Menge offen ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Di 26.04.2016
Autor: WinterMensch


> > Sei [mm]\Omega\in\mathbb{R}^n[/mm] offen mit [mm]0\notin\Omega[/mm]. Dann ist
> > [mm]\tilde{\Omega}:=\left\{x\in\mathbb{R}^n\setminus\{0\} : \frac{x}{|x|^2}\in \Omega \right\}[/mm]
> > ebenfalls offen mit [mm]0\notin\tilde{\Omega}[/mm].
>  >  Hallo,
> > Ich bin mir nicht sicher wie man diese Behauptung zeigen
> > könnte. Denn meiner Meinung nach gibt es da nicht viel zu
> > zeigen.
> > Ich dachte man könnte mit der Definition argumentieren: Da
> > in [mm]\tilde{\Omega}[/mm] nur die [mm]x\in\mathbb{R}\setminus\{0\}[/mm]
> > enthalten sind für die dieser Ausdruck in [mm]\Omega[/mm] liegt,
> > findet man bereits immer eine Umgebung um diese [mm]x[/mm] da [mm]\Omega[/mm]
> > offen ist.
> > Ist das zu einfach gedacht?
>  
> Na ja. Wenn Du eine solche Umgebung angeben könntest,
> wäre das O.K. Kannst Du das ?
>  
> Einfacher: definiere [mm]f:\IR^n \setminus\{0\} \to \IR^n[/mm] durch
> [mm]f(x):=\bruch{x}{|x|^2}[/mm]
>  
>
>
> Dann ist f stetig.
>  
> Welche Menge ist dann [mm]f^{-1}(\Omega)[/mm] ? Und welche
> Eigenschaft hat sie ?
>  

Ehrlich gesagt, weiß ich  nicht wie man von dieser Funktion eine Umkehrabbildung definieren sollte. Vielleicht sollte ich noch erwähnen, dass $|x|$ die euklidische Norm bezeichnet..

[mm] $f^{-1}$ [/mm] wäre dann nach dem Satz über die Umkehrabbildung ebenfalls stetig und die Menge vielleicht offen?

> FRED
>  >  Und wenn ja, wie würde man hier am besten vorgehen?
>  >  Vielen Dank im Vorraus :)
>  


Bezug
                        
Bezug
Zeige, dass Menge offen ist: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Di 26.04.2016
Autor: fred97


> > > Sei [mm]\Omega\in\mathbb{R}^n[/mm] offen mit [mm]0\notin\Omega[/mm]. Dann ist
> > > [mm]\tilde{\Omega}:=\left\{x\in\mathbb{R}^n\setminus\{0\} : \frac{x}{|x|^2}\in \Omega \right\}[/mm]
> > > ebenfalls offen mit [mm]0\notin\tilde{\Omega}[/mm].
>  >  >  Hallo,
> > > Ich bin mir nicht sicher wie man diese Behauptung zeigen
> > > könnte. Denn meiner Meinung nach gibt es da nicht viel zu
> > > zeigen.
> > > Ich dachte man könnte mit der Definition argumentieren: Da
> > > in [mm]\tilde{\Omega}[/mm] nur die [mm]x\in\mathbb{R}\setminus\{0\}[/mm]
> > > enthalten sind für die dieser Ausdruck in [mm]\Omega[/mm] liegt,
> > > findet man bereits immer eine Umgebung um diese [mm]x[/mm] da [mm]\Omega[/mm]
> > > offen ist.
> > > Ist das zu einfach gedacht?
>  >  
> > Na ja. Wenn Du eine solche Umgebung angeben könntest,
> > wäre das O.K. Kannst Du das ?
>  >  
> > Einfacher: definiere [mm]f:\IR^n \setminus\{0\} \to \IR^n[/mm] durch
> > [mm]f(x):=\bruch{x}{|x|^2}[/mm]
>  >  
> >
> >
> > Dann ist f stetig.
>  >  
> > Welche Menge ist dann [mm]f^{-1}(\Omega)[/mm] ? Und welche
> > Eigenschaft hat sie ?
>  >  
> Ehrlich gesagt, weiß ich  nicht wie man von dieser
> Funktion eine Umkehrabbildung definieren sollte. Vielleicht
> sollte ich noch erwähnen, dass [mm]|x|[/mm] die euklidische Norm
> bezeichnet..
>  
> [mm]f^{-1}[/mm] wäre dann nach dem Satz über die Umkehrabbildung
> ebenfalls stetig und die Menge vielleicht offen?
>  
> > FRED
>  >  >  Und wenn ja, wie würde man hier am besten
> vorgehen?
>  >  >  Vielen Dank im Vorraus :)
> >  

>  


In $ [mm] f^{-1}(\Omega) [/mm] $ ist mit [mm] f^{-1} [/mm] nicht die Umkehrfunktion gemeint, sondern

$ [mm] f^{-1}(\Omega)=\{x \in \IR^n \setminus \{0\}: f(x) \in \Omega\} [/mm] $

   "Urbild von [mm] \Omega" [/mm]

Es ist $ [mm] f^{-1}(\Omega)=\tilde{\Omega} [/mm] $

Mach Dir das klar. Weil f stetig ist, ist $ [mm] f^{-1}(\Omega) [/mm] $ offen in [mm] \IR^n \setminus \{0\} [/mm] und damit auch offen [mm] \in \IR^n. [/mm]

FRED

Bezug
                                
Bezug
Zeige, dass Menge offen ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Di 26.04.2016
Autor: WinterMensch

Ok, vielen Dank. Ich werde mir das noch einmal genau anschauen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de