www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Was passiert mit dem Bruch
Was passiert mit dem Bruch < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was passiert mit dem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 19.06.2016
Autor: arti8

Hallo,

ich hab in einigen Beispielaufgaben mal Brüche gefunden und iwie kann ich die Umformung nicht ganz nachvollziehen.


und zwar wird aus einem Bruch z.B.

[mm] \bruch{k}{k+1}=\bruch{1}{1+\bruch{1}{k}} [/mm] Diese Umformung half den limes zu erkennen bzw. die Konvergenz einer Reihe zu bestimmen.

Was passiert dort genau ?

ein weiteres Beispiel war [mm] cos(\pi [/mm] /4)= [mm] \bruch{\wurzel{2}}{2} [/mm] = [mm] \bruch{1}{\wurzel{2}} [/mm]

Hier bin cih bei der Entwicklung einer Taylorreihe gestolpert ändert zwar nichts am Ergebniss würde es gerne rotzdem verstehen was bei diesen Brüchen passiert ?

hab mal versucht es umzuschreiben.



[mm] \bruch{k}{k+1}= k^{1}*(k+1)^{-1}=k^{1}*k^{-1}+k^{1}*1^{-1}=1+\bruch{k}{1} [/mm]

Aber entweder ich mache es falsch oder das ist der falsche Ansatz das nachzuvollziehen. Jedenfalls würde ich gerne verstehen was in de Brüchen passiert. Kehrwert bringt auch nichts.

        
Bezug
Was passiert mit dem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 So 19.06.2016
Autor: Fulla


> Hallo,

>

> ich hab in einigen Beispielaufgaben mal Brüche gefunden
> und iwie kann ich die Umformung nicht ganz nachvollziehen.

>
>

> und zwar wird aus einem Bruch z.B.

>

> [mm]\bruch{k}{k+1}=\bruch{1}{1+\bruch{1}{k}}[/mm] Diese Umformung
> half den limes zu erkennen bzw. die Konvergenz einer Reihe
> zu bestimmen.

>

> Was passiert dort genau ?

Hallo arti8,

bei der Berechnung von Limiten verwendet man meistens, dass [mm]\lim_{k\to\infty}\frac{1}{k}=0[/mm] gilt. Darum will man solche Bruchterme "mit Gewalt" erzeugen. Bei [mm]\frac{k}{k+1}[/mm] stört, dass die k eben nicht als [mm]\frac 1k[/mm] dastehen. Das kann man aber ändern, indem man mit k kürzt:

[mm]\frac{k}{k+1}=\frac{k\cdot 1}{k\cdot (1+\frac 1k)}=\frac{1}{1+\frac 1k}[/mm]


>

> ein weiteres Beispiel war [mm]cos(\pi[/mm] /4)=
> [mm]\bruch{\wurzel{2}}{2}[/mm] = [mm]\bruch{1}{\wurzel{2}}[/mm]

>

> Hier bin cih bei der Entwicklung einer Taylorreihe
> gestolpert ändert zwar nichts am Ergebniss würde es gerne
> rotzdem verstehen was bei diesen Brüchen passiert ?

Üblicherweise nutzt man diese Umformung anderherum: [mm]\frac{1}{\sqrt 2}=\frac{\sqrt 2}{2}[/mm]. Oft möchte man seine Nenner rational haben, d.h. es sollen keine Wurzeln unterm Bruchstrich stehen. Dazu erweitert man den Bruch mit mit dem Nenner:

[mm]\frac{1}{\sqrt 2}=\frac{1\cdot \sqrt 2}{\sqrt 2\cdot\sqrt 2}=\frac{\sqrt 2}{2}[/mm]


> hab mal versucht es umzuschreiben.

>
>
>

> [mm]\bruch{k}{k+1}= k^{1}*(k+1)^{-1}\red{=\ }k^{1}*k^{-1}+k^{1}*1^{-1}=1+\bruch{k}{1}[/mm]

>

> Aber entweder ich mache es falsch oder das ist der falsche
> Ansatz das nachzuvollziehen. Jedenfalls würde ich gerne
> verstehen was in de Brüchen passiert. Kehrwert bringt auch
> nichts.

Das ist Quatsch. Das zweite Gleichheitszeichen ist falsch, du darfst die Klammer hier wegen des Exponenten nicht einfach ausmultiplizieren. Das ist genauso wie bei [mm]a\cdot (b+c)^2\neq a\cdot b^2+a\cdot c^2[/mm]


Lieben Gruß,
Fulla

Bezug
                
Bezug
Was passiert mit dem Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 So 19.06.2016
Autor: arti8

OK vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de