www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Fr 08.03.2019
Autor: Zwinkerlippe

Aufgabe
In einer Urne sind 3 schwarze und 2 rote Kugeln. Die Personen A und B vereinbaren folgendes Spiel:
A und B ziehen abwechselnd Kugeln, ohne Zurücklegen. Gewinner ist, wer zuerst eine rote Kugel zieht. Mit welcher Wahrscheinlichkeit gewinnt A, wenn
a) jeder jeweils genau eine Kugel ziehen darf und A beginnt
b) A mit einer Kugel beginnt, anschließend aber B und A jeweils 2 Kugeln ziehen dürfen?

Beste Grüße in den matheraum, ich habe mir überlegt:

a)
1. Zug durch A, zieht mit [mm] \bruch{2}{5} [/mm] rote Kugel, hat gewonnen, zieht mit [mm] \bruch{3}{5} [/mm] schwarze Kugel
2. Zug durch B, muss schwarze Kugel ziehen mit [mm] \bruch{2}{4}, [/mm] damit A noch im 3. Zug gewinnt
3. Zug durch A, zieht mit [mm] \bruch{2}{3} [/mm] rote Kugel, hat gewonnen

das ergibt

[mm] \bruch{2}{5}+\bruch{3}{5}*\bruch{2}{4}*\bruch{2}{3}=\bruch{24}{60}+\bruch{12}{60}=\bruch{36}{60}=0,6 [/mm]

hier bin ich mir eigentlich sicher?

b)
1. Zug durch A, zieht mit [mm] \bruch{2}{5} [/mm] rote Kugel, hat gewonnen, zieht mit [mm] \bruch{3}{5} [/mm] schwarze Kugel
2. Zug durch B, muss 2 schwarze Kugeln ziehen damit A noch im 3. Zug gewinnt, hier meine Frage, es sind noch 2 rote und 2 schwarze Kugeln in der Urne,
ist meine Überlegung richtig:

rot/rot [mm] \bruch{1}{4} [/mm]
schwarz/schwarz [mm] \bruch{1}{4} [/mm]
rot/schwarz bzw. schwarz/rot [mm] \bruch{1}{2}? [/mm]

3. Zug durch A, zieht mit 1 rote Kugel, da nur noch zwei rote Kugeln in der Urne sind

[mm] \bruch{2}{5}+\bruch{3}{5}*\bruch{1}{2}*1=\bruch{7}{10}=0,7 [/mm]

danke zwinkerlippe






        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 08.03.2019
Autor: chrisno


> ... a)
>  1. Zug durch A, zieht mit [mm]\bruch{2}{5}[/mm] rote Kugel, hat
> gewonnen, zieht mit [mm]\bruch{3}{5}[/mm] schwarze Kugel
>  2. Zug durch B, muss schwarze Kugel ziehen mit
> [mm]\bruch{2}{4},[/mm] damit A noch im 3. Zug gewinnt
>  3. Zug durch A, zieht mit [mm]\bruch{2}{3}[/mm] rote Kugel, hat
> gewonnen
>  
> das ergibt
>  
> [mm]\bruch{2}{5}+\bruch{3}{5}*\bruch{2}{4}*\bruch{2}{3}=\bruch{24}{60}+\bruch{12}{60}=\bruch{36}{60}=0,6[/mm]
>  
> hier bin ich mir eigentlich sicher?

[ok]

>  
> b)
>  1. Zug durch A, zieht mit [mm]\bruch{2}{5}[/mm] rote Kugel, hat
> gewonnen, zieht mit [mm]\bruch{3}{5}[/mm] schwarze Kugel
>  2. Zug durch B, muss 2 schwarze Kugeln ziehen damit A noch
> im 3. Zug gewinnt, hier meine Frage, es sind noch 2 rote
> und 2 schwarze Kugeln in der Urne,
> ist meine Überlegung richtig:
>  
> rot/rot [mm]\bruch{1}{4}[/mm]
>  schwarz/schwarz [mm]\bruch{1}{4}[/mm]
>  rot/schwarz bzw. schwarz/rot [mm]\bruch{1}{2}?[/mm]
>  
> 3. Zug durch A, zieht mit 1 rote Kugel, da nur noch zwei
> rote Kugeln in der Urne sind
>  
> [mm]\bruch{2}{5}+\bruch{3}{5}*\bruch{1}{2}*1=\bruch{7}{10}=0,7[/mm]

Nach Deiner Argumentation müsste da aber
[mm]\bruch{2}{5}+\bruch{3}{5}*\bruch{1}{\red{4}}*1=\bruch{11}{20}=0,55[/mm]
stehen oder?
Allerdings stimmt es nicht. Es muss das Gleiche herauskommen, wenn Du die Kugeln nacheinander oder gleichzeitig ziehst.
Nacheinander:
1. Zug P(Kugel ist schwarz) = 1/2
2. Zug P(Kugel ist schwarz) = 1/3
also ergibt sich als Wahrscheinlichkeit, dass B zwei schwarze Kugeln zieht 1/6.
Gleichzeitig:
Dafür bekommen die Kugeln Nummern: r1, r2, s1, s2
Mögliche Ziehungen sind: (r1, r2), (r1, s1), (r1, s2), (r2, s1), (r2, s2), (s1, s2)
es gbt also 6 Möglichkeiten für B, von denen nur eine A zum Gewinn verhilft.

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Sa 09.03.2019
Autor: Zwinkerlippe

Danke für die Antwort, zu Aufgabe b) habe ich jetzt:

1. Zug durch A, zieht mit [mm] \bruch{2}{5} [/mm] rote Kugel, hat gewonnen, zieht mit [mm] \bruch{3}{5} [/mm] schwarze Kugel
2. Zug durch B, muss 2 schwarze Kugeln ziehen damit A noch im 3. Zug gewinnt

[mm] \bruch{2}{5}+\bruch{3}{5}*\bruch{1}{6}*1=\bruch{1}{2} [/mm]

die Wahrscheilichkeit 1 ist eigentlich nur noch formal, im 3. Zug zieht A mit der Wahrscheinlichkeit 1 rot, da nur noch zwei rote Kugeln in der Urne sind,

Ist meine Rechnung und Argumentation so korrekt? danke an alle fleißige Helfer





Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Sa 09.03.2019
Autor: chrisno

[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de