www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summe auflösen
Summe auflösen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mi 06.05.2015
Autor: WasZum

Aufgabe 1
a) Löse die Summe auf: [mm] \summe_{j=1}^{n} \wurzel[n]{3^{j}} [/mm] = [mm] \summe_{j=1}^{n} 3^{\bruch{j}{n}} [/mm]

Aufgabe 2
b) Löse die Summe auf: [mm] \summe_{j=1}^{n} 2^{-\bruch{j}{n}+\bruch{1}{n}}*(2^{\bruch{1}{n}}-1) [/mm]

Hallo,

ich weiß, dass das Ergebnis für a) = [mm] \bruch{2*3^{\bruch{1}{n}}}{3^{\bruch{1}{n}}-1} [/mm] und für b) = [mm] 2^{\bruch{1}{n}-1} [/mm] ist.

Mir ist auch die Beziehung [mm] \summe_{j=1}^{n} [/mm] j = [mm] \bruch{n(n+1)}{2} [/mm] bekannt, ich weiß aber nicht ob diese hier überhaupt angewand werden muss.

Ich würde mich wirklich freuen, wenn jemand mir erklären könnte, wie ich auf diese Ergebnisse komme. Ich komme leider nicht drauf.

Vielen Dank und liebe Grüße,
WasZum

Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summe auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mi 06.05.2015
Autor: impliziteFunktion

Eine Möglichkeit diese Aufgabe zu lösen wäre mittels Induktion.
Du bist hier in der Situation, dass du das Ergebnis ja kennst. Das nimmt dir sehr viel Arbeit ab.

Angenommen du würdest diese Lösungen nicht kennen. Dann hättest du nun folgendes zu tun.
Und zwar musst du dann ein Bildungsgesetz erkennen.

Zum Beispiel:

[mm] $\sum_{k=0}^n [/mm] k$ (die dir ebenfalls bekannt Summe)

Und du möchtest jetzt eine explizite Formel angeben, dann gehst du etwa so vor, dass du ein paar Werte einsetzt und dann ausrechnest.

Für n=0

[mm] $\sum_{k=0}^0 [/mm] k=0$

Für n=1

[mm] $\sum_{k=0}^1 [/mm] k=1$

Für n=2

[mm] $\sum_{k=0}^2 [/mm] k=3$

Für n=3

[mm] $\sum_{k=0}^3 [/mm] k=6$

Du hast nun also die Folgeglieder 0,1,3,6 und möchtest nun dir das ausrechnen weiterer Summen ersparen und eine Formel angeben die das erfüllt. Du überlegst dir also eine entsprechende  Formel für die dir bekannten Werte und hoffst, dass dies dann auch wirklich die Formel ist, die gesucht wird.

Hier wäre das dann das bekannt [mm] $\frac{n(n+1)}{2}$. [/mm]
Du vermutest also

[mm] $\sum_{k=0}^n k=\frac{n(n+1)}{2}$ [/mm]

Um zu zeigen, dass die Formel hält was sie verspricht, führst du dann einen Beweis durch Induktion.

So hättest du auch bei deiner Aufgabe hier vorgehen können.
Die Formeln kennst du bereits, also brauchst du nur noch die Induktion.

Solche Formeln zu erkennen geht manchmal relativ gut, aber kann auch ziemlich knifflig (und natürlich auch unmöglich) werden. Dies ist also kein Allheilmittel für solche Aufgaben, aber ich finde das immer recht schön.

Bei der b) müsstest du das Ergebnis aus a) verwenden können. Da wäre das dann also nicht mehr nötig. Ich bin mir aber gerade selber noch nicht 100% sicher ob das wirklich geht.

Bezug
        
Bezug
Summe auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 06.05.2015
Autor: abakus


> a) Löse die Summe auf: [mm]\summe_{j=1}^{n} \wurzel[n]{3^{j}}[/mm]
> = [mm]\summe_{j=1}^{n} 3^{\bruch{j}{n}}[/mm]

Hallo,
nur ein Sichwort: geometrische Reihe (allerdings endlich und nicht mit j=0 beginnend).
Gruß Abakus

> b) Löse die Summe
> auf: [mm]\summe_{j=1}^{n} 2^{-\bruch{j}{n}+\bruch{1}{n}}*(2^{\bruch{1}{n}}-1)[/mm]

>

> Hallo,

>

> ich weiß, dass das Ergebnis für a) =
> [mm]\bruch{2*3^{\bruch{1}{n}}}{3^{\bruch{1}{n}}-1}[/mm] und für b)
> = [mm]2^{\bruch{1}{n}-1}[/mm] ist.

>

> Mir ist auch die Beziehung [mm]\summe_{j=1}^{n}[/mm] j =
> [mm]\bruch{n(n+1)}{2}[/mm] bekannt, ich weiß aber nicht ob diese
> hier überhaupt angewand werden muss.

>

> Ich würde mich wirklich freuen, wenn jemand mir erklären
> könnte, wie ich auf diese Ergebnisse komme. Ich komme
> leider nicht drauf.

>

> Vielen Dank und liebe Grüße,
> WasZum

>

> Nur für Erst-Poster
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
        
Bezug
Summe auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 06.05.2015
Autor: fred97

Für q [mm] \ne [/mm] 1 ist

[mm] \summe_{j=0}^{n}q^j= \bruch{1-q^{n+1}}{1-q} [/mm]
und

[mm] \summe_{j=1}^{n}q^j= \bruch{1-q^{n+1}}{1-q}-1=q* \bruch{1-q^{n}}{1-q} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de