www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit /kompakte Menge
Stetigkeit /kompakte Menge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit /kompakte Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 20.05.2006
Autor: pusteblume86

Hallo ihr...Ich hoffe ihr könnt mir weiterhelfen.

Ich habe die Aufgabe, zu zeigen, dass in kompakten Räumen aus der Stetigkeit, die gleichmäßige Stetigkeit folgt.

Ich habe irgendwie null Plan wie ich es machen soll.

Ich kenne die Definitionen von Stetigkeit und auch von gleichmäßiger Stetigkeit in metrischen Räumen..Aber mir fehlt irgendwie der Ansatz,wie jetzt aufgrund der Kompaktkeit aus Stetigkeit , gleichmäßige Stetigkeit folgt.

Kann mir jemand helfen?Ich würde gerne einen Aufgabenansatz posten....Aber: mein einziger Ansatz bisher war es, die Bedingungen auszuschreiben(also die Definitionen von Stetgkeit und glm.Stetigkeit.

Vielen Dank im Voraus!

Lg Sandra

        
Bezug
Stetigkeit /kompakte Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 20.05.2006
Autor: felixf

Hallo Sandra!

> Hallo ihr...Ich hoffe ihr könnt mir weiterhelfen.
>
> Ich habe die Aufgabe, zu zeigen, dass in kompakten Räumen
> aus der Stetigkeit, die gleichmäßige Stetigkeit folgt.
>
> Ich habe irgendwie null Plan wie ich es machen soll.
>  
> Ich kenne die Definitionen von Stetigkeit und auch von
> gleichmäßiger Stetigkeit in metrischen Räumen..Aber mir
> fehlt irgendwie der Ansatz,wie jetzt aufgrund der
> Kompaktkeit aus Stetigkeit , gleichmäßige Stetigkeit folgt.
>
> Kann mir jemand helfen?Ich würde gerne einen Aufgabenansatz
> posten....Aber: mein einziger Ansatz bisher war es, die
> Bedingungen auszuschreiben(also die Definitionen von
> Stetgkeit und glm.Stetigkeit.

Sei also $f : X [mm] \to [/mm] Y$ stetig und [mm] $\varepsilon [/mm] > 0$ gegeben. (Ein Standard-Stetigkeits-Beweisanfang ;-) )

Da $f$ stetig ist gibt es zu jedem $x [mm] \in [/mm] X$ ein [mm] $\delta(x) [/mm] > 0$ so, dass aus $d(x, y) < [mm] \delta$ [/mm] folgt $d(f(x), f(y)) < [mm] \varepsilon/2$. [/mm]

Nun ist $X = [mm] \bigcup_{x \in X} B_{\delta(x)/2}(x)$ [/mm] eine offene Ueberdeckung von $X$. Also gibt es endlich viele [mm] $x_1, \dots, x_n \in [/mm] X$ mit $X = [mm] \bigcup_{i=1}^n B_{\delta(x_i)/2}(x_i)$. [/mm]

Setze [mm] $\delta [/mm] := [mm] \frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \} [/mm] > 0$.

Sind nun $x, y [mm] \in [/mm] X$ mit $d(x, y) < [mm] \delta$, [/mm] so gibt es ein $i [mm] \in \{ 1, \dots, n \}$ [/mm] mit $d(x, [mm] x_i), [/mm] d(y, [mm] y_i) [/mm] < [mm] \delta(x_i)$ [/mm] (warum?). Und weiterhin gilt $d(f(x), f(y)) [mm] \le \varepsilon/2 [/mm] + [mm] \varepsilon/2 [/mm] = [mm] \varepsilon$ [/mm] (warum?).

So, die Luecken musst du noch selber ausfuellen :-)

LG Felix


Bezug
                
Bezug
Stetigkeit /kompakte Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 21.05.2006
Autor: pusteblume86

qoute:  Sind nun $ d(x, y) < [mm] \delta [/mm] $ mit , so gibt es ein
$ i [mm] \in \{ 1, \dots, n \} [/mm] $ mit $ d(x, [mm] x_i), [/mm] d(y, [mm] y_i) [/mm] < [mm] \delta(x_i) [/mm] $(warum?). Und weiterhin gilt $ d(f(x), f(y)) [mm] \le \varepsilon/2 [/mm] + [mm] \varepsilon/2 [/mm] = [mm] \varepsilon [/mm] $  (warum?).

So, die Luecken musst du noch selber ausfuellen  

LG Felix "

Erstma vielen Dank für deine Hilfe. Soweit verstanden.

also das erste "warum?" ist klar. Die xi's liegen in X, das x auch. Da  [mm] \delta [/mm] := [mm] \frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \} [/mm] > 0 $ muss also d(x,xi)< [mm] delta(x_i) [/mm] sein.

Beim 2. bin ich mir nicht ganz sicher...Also es ist natürlich auf jeden Fall wegen der Dreieicksungleichung. Nur ich weiß nicht genau, welchen Term ich einfügen muss...Da hab ich grad noch so mein Problem.

Eine Frage noch zum Anfang..Warum sagst du bei der Definition für die Stetigkeit, dass delta(x) >0 existieren muss und nicht einfach nur delta?Ich kenne es nur mit delta.Oder willst du darauf aufmerksammachen, von was es noch abhängt?

Lg Sandra

Bezug
                        
Bezug
Stetigkeit /kompakte Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 21.05.2006
Autor: felixf

Hallo Sandra!

> qoute:  Sind nun [mm]d(x, y) < \delta[/mm] mit , so gibt es ein
>  [mm]i \in \{ 1, \dots, n \}[/mm] mit [mm]d(x, x_i), d(y, y_i) < \delta(x_i) [/mm](warum?).
> Und weiterhin gilt [mm]d(f(x), f(y)) \le \varepsilon/2 + \varepsilon/2 = \varepsilon[/mm]
>  (warum?).
>
> So, die Luecken musst du noch selber ausfuellen  
>
> LG Felix "
>  
> Erstma vielen Dank für deine Hilfe. Soweit verstanden.
>  
> also das erste "warum?" ist klar. Die xi's liegen in X, das
> x auch. Da  [mm]\delta[/mm] := [mm]\frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \}[/mm]
> > 0 $ muss also d(x,xi)< [mm]delta(x_i)[/mm] sein.

Vorsicht, du musst erst noch zeigen dass es ein [mm] $x_i$ [/mm] gibt was sowohl fuer $x$ als auch fuer $y$ die Bedingung erfuellt!

> Beim 2. bin ich mir nicht ganz sicher...Also es ist
> natürlich auf jeden Fall wegen der Dreieicksungleichung.

Genau.

> Nur ich weiß nicht genau, welchen Term ich einfügen
> muss...Da hab ich grad noch so mein Problem.

Du musst das so aufspalten dass du zwei Ausdruecke da stehen hast, die [mm] $\le \frac{\varepsilon}{2}$ [/mm] sind. Da gibts nicht viel zur Auswahl :)

> Eine Frage noch zum Anfang..Warum sagst du bei der
> Definition für die Stetigkeit, dass delta(x) >0 existieren
> muss und nicht einfach nur delta?Ich kenne es nur mit
> delta.Oder willst du darauf aufmerksammachen, von was es
> noch abhängt?

Genau, ich wollte drauf aufmerksam machen wovon es abhaengt. Und es dann gleich weiterbenutzen koennen, wenn ich ein beliebiges $x$ aus $X$ nehme, um nicht extra schreiben zu muessen ``sei [mm] $\delta [/mm] > 0$ passend wie oben zu $x$'', sondern halt einfach [mm] $\delta(x)$ [/mm] :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de