www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Reelle Funktionen
Reelle Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mi 13.04.2011
Autor: RWBK

Aufgabe
Es sei f : [−a, a] → R. Man zeige, f lässt sich als Summe einer
geraden und einer ungeraden Funktion schreiben, d. h. f(x) = g(x) + u(x) für alle −a ≤ x ≤ a mit g gerade und u ungerade.

Hallo,

diese Aufgabe hat unser Lehrer heute vor gerechnet. Leider kann ich damit aber überhaupt nichts anfangen. Ich hoffe daher es kann mir jemand erklären. Hier kommt die schreibweise von unserem Lehrer.

g(−x) [mm] =\bruch{f(−x) + f(−(−x))}{2}=\bruch{f(−x) + f(x)}{2}=g(x) [/mm]


Wie kommt er hier den jetzt auf folgendes f(−x) + f(−(−x))
???

u(−x) [mm] =\bruch{f(−x) − f(−(−x))}{2}=\bruch{f(−x) − f(x)}{2}= [/mm] −u(x)

Es sagt zu uns wir sollten uns das mal ansehen. Aber ehrlich gesagt verstehe ich nicht was er da gemacht hat.

Würde mich sehr freuen wenn mir das vllt jemand ein bisschen erläutern/ erklären könnte.

Mfg
RWBK

        
Bezug
Reelle Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 13.04.2011
Autor: schachuzipus

Hallo RWBK,

nun, er definiert die gerade Funktion [mm]g(x)[/mm] durch

[mm]\red{g(x):=\frac{f(x)+f(-x)}{2}}[/mm]

Dann steht da (leicht verstümmelt) die Probe, ob [mm]g[/mm] auch wirklich gerade ist.

Es wird rechnerisch gezeigt, dass [mm]g(-x)=g(x)[/mm] gilt.

Rechne es nach! Damit ist [mm]g[/mm] gerade.

Dann wird die ungerade Funktion [mm]u(x)[/mm] definiert durch

[mm]\blue{u(x)=\frac{f(x)-f(-x)}{2}}[/mm]

Dann wird gezeigt, dass [mm]u[/mm] tatsächlich ungerade ist, dass also gilt: [mm]u(-x)=-u(x)[/mm]

Dann setze mal zusammen, berechne [mm]\red{g(x)}+\blue{u(x)}[/mm]

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de